
COMP 8920: Cryptography Winter 2025

Lecture 24 — April 3, 2025

Prof. Curtis Bright Scribe: Mahzabin Chowdhury

Semantically Secure RSA

We make RSA semantically secure by introducing randomness into the cryptosystem, adding a
random oracle G : Zk

2 → Zm
2 into the public key. Let P = Zm

2 , C = Zk
2 × Zm

2 , and define

ek(x) = (rb mod n,G(r)⊕ x) (1)

where (y1, y2) ∈ Zk
2 × Zm

2 for random r ∈ Zk
2 and

dk((y1, y2)) = G(ya1 mod n)⊕ y2 (2)

This works, since dk(y1, y2) equals

G((rb mod n)a mod n)⊕ y2 = G(rab mod n)⊕G(r)⊕ x (3)

= G(r)⊕G(r)⊕ x (4)

= x (5)

since rab = r.

An informal argument why this is semantically secure (i.e., the distinguishing problem can’t be
solved with probability more than 1

2) is that in order to determine any information about x we
must determine the mask G(r). Any partial information about r is useless because G is a random
oracle; the only way to compute G(r) is to determine r. Under the assumption that RSA is secure,
this augmented cryptosystem is semantically secure. The main drawback is data expansion: m bits
of plaintext expand to m+ k bits of ciphertext.

The Discrete Log Problem

Say G is a group, α ∈ G of order n, and define ⟨α⟩ = {αi : 0 ≤ i ≤ n − 1} to be the cyclic group
generated by α. For instance G = Z∗

p where p is prime, and α is a primitive element of Z∗
p, i.e.,

⟨α⟩ = Z∗
p.

The discrete log problem is: given β ∈ ⟨α⟩ to determine the value of i for which β = αi, i.e.,
compute i = logα(β), the discrete log of β base α.

Example: take p = 2579 and α = 2, a primitive element in Z∗
p. What is log2(949) in Z∗

p?

In contrast to logs over the reals, computing logs in Z∗
p seems difficult in general. The naive strategy

would be to compute 22, 23, 24, . . . , 2p−2 (mod p) until 949 is reached. In the worst case, this uses
at most p evaluations of α mod p. Since each multiplication modp is O((log p)2) bit operations,

1



this uses O(p(log p)2) bit operations, which is O(2log p(log p)2). In contrast to logarithms over the
reals, computing discrete logs in Z∗

p is generally difficult.

The naive strategy would be to compute

22, 23, 24, . . . , 2p−2 mod p

until 949 is reached. In the worst case, this requires at most p evaluations of powers modulo p.

Each multiplication modulo p takes O((log p)2) bit operations, so the total cost is:

O(p(log p)2) = O(2log2 p · (log p)2),

which is exponential time in log p.

ElGamal Cryptosystem

The ElGamal cryptosystem is based on the difficulty of the discrete logarithm problem.

Suppose:

• p is a prime

• α is a primitive element of Z∗
p

• Let P = Z∗
p, C = Z∗

p × Z∗
p

• Let the keyspace be K = {(p, α, a, β) : β ≡ αa mod p}.

Public key: (p, α, β)

Private key: a = logα β

Encryption

To encrypt a message x, choose a random k ∈ Zp−1 and compute:

Enck(x) = (αk mod p, x · βk mod p)

Let:
(y1, y2) = (αk, x · βk) ∈ Z∗

p × Z∗
p

Decryption

To decrypt (y1, y2), compute:
x = y2 · (ya1)−1 mod p

2



The encryption “masks” x by multiplying it with βk, a random-looking element. Eve knows β, but
not k, and would need to solve:

k = logα(α
k)

which is presumed hard.

However, Bob can compute βk without knowing k:

(αk)a ≡ αak ≡ (αa)k ≡ βk mod p

Once βk is computed, its inverse modulo p, (βk)−1, is easy to find using the Euclidean algorithm.

Eve would need to compute a = logα β, which is presumed to be a hard discrete log problem.

Example

Let:
p = 2579, α = 2, β = 949

Alice wants to send message x = 1299. She picks a random k = 853 and computes:

y1 = 2853 mod 2579 = 435

βk = 949853 mod 2579 = 2396

y2 = 1299 · 2396 mod 2579 = 2396

So the ciphertext is:
(y1, y2) = (435, 2396)

Bob’s private key is a = 765. He computes:

x = 2396 · (435765)−1 mod 2579

435765 mod 2579 = 2424, and 2424−1 mod 2579 = 1980

x = 2396 · 1980 mod 2579 = 1299

Security Consideration

To be secure, p should have at least 2048 bits, and p−1 should have at least one large prime factor.

A common approach is to choose p of the form:

p = 2q + 1

where q is also prime. Such primes are called safe primes.

It is conjectured that there are infinitely many safe primes, and the number of safe primes in the
interval [1, n] is approximately:

1.32

(lnn)2

Thus, if p is 2048 bits long, you might need to try about 1.5 million candidate values before finding
a safe prime.

3


