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Recall the Euclidean algorithm run on a/b gives sequence of quotients qi, ..., ¢m
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a/b:C]1+—1
C]2+q3+

_1
qq+-..

which we denote C([qu, ..., ¢m]) and let C; denote this truncated after j quotients, as j increases, C;
becomes closer to a/b. So, we can easily compute all convergents to a/b, and last class we showed
that

b/n —t/a| < 1/(3a?)

which implies that ¢/a is a convergent of b/n. We just need to figure out which one. Since
¢(n) = (ab — 1)/t we can solve for ¢(n) once t/a known (we just try all possibilities for ¢/a).

The Rabin Cryptosystem is a cryptosystem similar to RSA but is secure under the assumption n
cannot be factored. Suppose p, g are primes =3 mod 4, let pg =n and P = Z;,. Take

K={(np,q) :p,g=3 (mod4)}

and define ex(x) = 22 mod n and di(y) = V¥ mod n. n is the public key and (p, q) is the private
key. Although Rabin is easier to describe than RSA, it has a drawback that there will be four
square roots of y mod n. So, Bob cannot uniquely compute the plaintext from gy, unless it has some
form of redundancy. How can Bob decrypt y? By CRT, finding 22 = y (mod n) is equivalent to
solving

2=y (mod p)
22 =y

(mod q)

If 7 is fixed, {#\/y = Z (mod ¢),£,/y = Z (mod p)} and all choices of & give all square roots
of y. How to solve Z? =y (mod p)? When p = 3 (mod 4) there is a simple formula for Z. Note
Euler’s criterion says that y®~1 = 1 (mod p), since by construction y is a QR modp. Multiply
both sides by y:

y# 2 =y (mod p)

and since (p+1)/2 is even, (y®TD/9)2 =4 (mod p), so yPt1/4 mod p is a square root of y mod p.
Similarly, y(q+1)/ 4 is a square root of y mod q. If p =1 (mod 4) there is no deterministic square
root algorithm known, but a polynomial time Las Vegas algorithm is known.

We’ll show Rabin is secure if n is hard to factor, i.e., if Rabin can be broken (i.e., square roots can
be computed) then n can be factored. So we show that factoring n reduces to computing square

roots modn or
Factor(n) < y/in Z

So suppose an oracle exists for computing square roots mod n. We'll give a Las Vegas algorithm
to factor n with failure probability of at most 1/2:



Choose a random r € Z;,
y:=r>modn

x :=,/y modn
if z = +r (mod n) then return failure else return ged(z + r,n) (a nontrivial factor).

Note 22 = 72 (mod n), but  # +r (mod n) so n|(z — r)(x +r) but n{z —r and n { z + r. Since
n=p-q, p,q prime, pq|(z — r)(x + r) implies pg|(x — r) or pq|(z + ) or (p|(x —r) Ag|(x + r)) or
vice versa. The first two cases contradict n 1 (z £ r), so we have p|(z —r) and ¢ { (x — r) or vice
versa. Thus, ged(z — 7, n) would be p or . What’s the success probability? Let w be a non-trivial
square root of 1. Then {#r, £wr} are the 4 roots of r2. The oracle doesn’t know the value of r,
which was chosen randomly, and so it doesn’t know which of the roots will lead to success. Half the
roots it returns will lead to success (when it returns +wr), so with probability 1/2 the return value
leads to a non-trivial gcd. This also shows Rabin is insecure against a chosen cipher-text attack,
as with this algorithm would let them factor n, as the chosen cipher-text attack assumes a square
root oracle exists.

Semantic Security: So far we’ve assumed Eve wants to break a cryptosystem by finding the
secret/private key (called a total break). A partial break is when Eve can decrypt a previously
unseen cipher-text (without the key) or learn some information about the plain-text given the
cipher-text. Or, Eve might be able to distinguish between the encryption of different plain-texts
or between a cipher-text and random string. The distinguishability problem is, given x1, x2,y with
ex(z;) =y fori =1ori= 2 to determine if i = 1 or i = 2. If encryption is done using a public
key encryption, then randomness must be introduced in order to make this a difficult problem.
If the problem cannot be solved with probability more than 1/2 the cryptosystem is said to be
semantically secure. Achieving this is difficult, since it is a weak adversarial goal, and any bit of
info leaked about the plain-text may make the distinguishability problem solvable. For example,
RSA has the following partial break: Since b is coprime to ¢(n) = (p — 1)(¢ — 1) which is even, b is
odd. Then the Jacobi symbol (y/n) = (z°/n) = (z/n)® = (z/n) since £1 raised to an odd number
doesn’t change. So, Eve can compute (z/n).

It is possible to show that RSA doesn’t leak other information (assuming it is secure) like the value
of (z mod 2). To do this, you reduce the problem of decrypting RSA to the problem of computing
x mod 2 from y, showing RSAdecryption(y) < parity(y) where parity(y) = di(y) mod 2. It can
be shown that if the distinguishability problem cannot be solved then no information of any kind
is leaked about the plain-text, because any such info would allow solving the distinguishability
problem. Since RSA is deterministic, Eve can solve this problem by simply computing e;(z), e2(x),
and checking which is = y. We introduce randomness to the cryptosystem with a random oracle
G : 75 — 75 which in practice will be realized by a hash function.



