COMP 8920: Cryptography

Winter 2025

Lecture 22 — March 27, 2025

Prof. Curtis Bright

Scribe: Rajat Yadav

RSA and Continued Fractions

Next, we will show that if the decryption exponent a is revealed, the n can be factored in expected polynomial time. So, if a is leaked, a new modulus n must be chosen in addition to a new (a,b) pair. The algorithm is of Las Vegas type, meaning that it may fail to work (output fail) with probability ε . It can therefore be shown that you expect to run the algorithm $1/(1-\varepsilon)$ times until a success. The algorithm is somewhat similar to the Miller-Rabin primality test in that a random base $w \in \mathbb{Z}_n^*$ is chosen and exponentiated in \mathbb{Z}_n . Recall that we write $n-1=2^k \cdot m$ (with m odd) and compute $w^m, w^{2m}, w^{4m}, \ldots, w^{2^k m}$ all in \mathbb{Z}_n^* .

This algorithm will do something similar except based on writing $ab-1=2^s \cdot r$ (where (a,b) is the decryption/encryption exponent pair).

Algorithm

Input: a, b, n where $ab \equiv 1 \mod (\phi(n))$

- 1. Write $ab 1 = 2^s \cdot r$ for $s, r \in \mathbb{Z}, r$ odd.
- 2. Choose a random w in [2, n-1]
- 3. If gcd(w, n) > 1: return gcd(w, n) (either p or q)
- $4. \ v := w^r \bmod n$
- 5. If v = 1: return failure
- 6. For i from 1 to s:
 - (a) $v_{\text{prev}} := v$
 - (b) $v := v^2 \mod n$
 - (c) If v = -1: return failure
 - (d) If v = 1: return $gcd(v_{prev} + 1, n)$

In the final return, v_{prev} is a non-trivial square root of 1. We must eventually reach a return because $w^{ab-1} \equiv 1 \mod n$ as $ab = 1 + k\phi(n)$ for $k \in \mathbb{Z}$ and $w^{\phi(n)} \equiv 1 \mod n$.

We already saw $gcd(v_{prev} \pm 1, n)$ will be a non-trivial factor (p or q) in the previous class. However, the algorithm fails when either:

- 1. $w^r \equiv 1 \mod n$ (this doesn't help find a root of 1)
- 2. $w^{2^{i_r}} \equiv -1 \mod n$ (as this only finds a trivial root of 1)

One can show there are at most n/4 values of w in case (1) and at most n/4 values of w in case (2), so there are at most n/2 values of w which cause failure, with probability at most 1/2.

Small Decryption Exponents

Can we take the decryption exponent to be small? This would be nice in order to speed up decryption, but to be secure we'll need a to be at least $3n^{1/4}$ as we'll show. We'll show that n can be factored in polynomial time when:

$$3a < n^{1/4} \text{ and } q < p < 2q$$
 (1)

The second inequality says that if n has l bits then p and q each have l/2 bits (± 1 bit) which is typical, and the first inequality says that a has at most l/4-1 bits.

So for RSA to be secure, we always ensure $3a > n^{1/4}$, even though this increases the cost of decryption slightly.

The attack is based on computing an approximation to the fraction b/n (a publicly known quantity) that has a smaller denominator than n. Since $ab \equiv 1 \mod \phi(n)$ or $ab = 1 + t \cdot \phi(n)$ for $t \in \mathbb{Z}$.

Since $n = pq > q^2$ so $q < \sqrt{n}$, and $0 < n - \phi(n) = p + q - 1 < 2q + q - 1 = 3q - 1 < 3\sqrt{n}$.

$$\left| \frac{b}{n} - \frac{t}{a} \right| = \left| \frac{ba - tn}{an} \right| = \left| \frac{1 + t\phi(n) - tn}{an} \right| = \left| \frac{t(n - \phi(n)) - 1}{an} \right| \tag{2}$$

$$<\frac{3\sqrt{n}t}{an} = \frac{3t}{a\sqrt{n}}\tag{3}$$

Note $t = \frac{ab-1}{\phi(n)} < \frac{ab}{\phi(n)} < a < \frac{n^{1/4}}{3}$ so the above is

$$<\frac{n^{1/4}}{a\sqrt{n}} = \frac{1}{an^{1/4}} \tag{4}$$

and $\frac{1}{n^{1/4}} < \frac{1}{3a}$ by assumption.

The final bound is $\left|\frac{b}{n} - \frac{t}{a}\right| < \frac{1}{3a^2}$. Since $\frac{1}{3a^2}$ is very small, this means $\frac{t}{a}$ is a very good approximation to $\frac{b}{n}$. In fact, $\frac{t}{a}$ can be computed directly from $\frac{b}{n}$ by the following:

Theorem 1. If $\frac{a}{b}$ and $\frac{c}{d}$ are in lowest terms and $\left|\frac{a}{b} - \frac{c}{d}\right| < \frac{1}{2d^2}$, then $\frac{c}{d}$ is a convergent in the continued fraction (CF) expansion of $\frac{a}{b}$.

A continued fraction is of the form $q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{q_4 + \dots}}}$ when the q_i 's are positive integers. In fact,

the CF expansion of $\frac{a}{b}$ has a surprising connection to the Euclidean algorithm. When running the Euclidean algorithm on (a, b), the quotients produced are exactly the q_i in the CF expansion of $\frac{a}{b}$.