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Miller-Rabin primality test:

Write n − 1 = 2km for k ∈ Z and m odd, then consider the sequence an−1 mod n, a(n−1)/2 mod
n, a(n−1)/22 mod n, . . . , a(n−1)/2k , Recall if n is prime, the first entry will be 1 by Fermat’s little
theorem, and the second entry will be ±1 by Euler’s criterion. In general if n is prime, this
sequence must be of the form (1, 1, . . . , 1,−1, ∗, ∗, ∗) or (1, 1, . . . , 1) where ∗ denotes a number not
±1. So, given n, if the above sequence is of the form (∗, ∗, . . . , ∗) (quite likely if n is not prime)
or (1, 1, 1, ∗, ∗, ∗, . . . , ∗) then we can be sure that n is not prime. Every number in the sequence
is the square of the number to its right, so in this case we would have a number not ±1 when
squared gives 1 which cannot happen when n is prime. The first case cannot happen when n is
prime by Fermat’s little theorem. So, Miller-Rabin computes this sequence starting from the right
entry (a(n−1)/2k) mod n = am mod n. If it is ±1, n is likely prime. Then square it to compute the
number to its left. If this is −1 n is likely prime, but if it is 1, n cannot be prime as we found a
square root of 1 that is not ±1. Repeat this until the 2nd last entry which must be ±1 by Euler’s
criterion if n is prime. The error probability is at most 1/4, and this is very pessimistic in practice.

Square roots mod n: Say n is odd and a ∈ Z∗
n. We know if n is prime that has either two square

roots modn (when
(
a
n

)
= 1) or no square roots modn when

(
a
n

)
= −1). In fact, when n is a prime

power, i.e., n = pe for prime p and e ∈ Z∗, a has two square roots exactly when
(
a
p

)
= 1. For

general n, we have the following:

Thm: If n > 1 is odd and n =
∏l

i=1 p
ei
i is its prime factorization then if a ∈ Z∗

n there are 2l square

roots of a when
(

a
p1

)
=

(
a
p2

)
= · · · =

(
a
pl

)
= 1 and no square roots if

(
a
pi

)
= −1 for any 1 ≤ i ≤ l

Proof by CRT:

y2 ≡ a (mod n) ⇔


y2 ≡ a (mod pe11 )

y2 ≡ a (mod pe22 )
...

y2 ≡ a (mod pell )

When
(

a
pi

)
= −1 for some i, then y2 ≡ a (mod peii ) has no solutions, so y2 ≡ a (mod n) has none

either. When
(

a
pi

)
= 1 for all i, then each y2 ≡ a (mod peii ) has exactly two solutions, say ±bi.

Each choice of ± results in a different system of congruences


y ≡ ±b1 (mod peii )
...

y ≡ ±bl (mod peii )
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which for each choice of ± gives a unique solution by CRT. Thus, as there are 2l choices of ±,
there are 2l solutions of y2 ≡ a (mod n). A special case of this theorem says that for RSA moduli
n = p · q there are exactly 22 = 4 square roots of 1 mod n. Clearly ±1 are square roots of 1 mod n
so, there are two non-trivial square roots of 1 mod n. E.g., if n = 403 = 13 · 31, the roots of 1 are
±1 and ±92 as 922 ≡ 1 (mod 403). We’ll show that knowledge of either non-trivial root of 1 allows
factoring n.

For suppose y2 ≡ 1 (mod n), but y ̸≡ ±1 (mod n) so y is a non-trivial square root of 1 mod n.
This means that n | (y2 − 1) but n ∤ (y± 1). This means pq | (y2 − 1) = (y− 1)(y+ 1), so we know
p | (y − 1)(y + 1) which since p is prime, p | (y − 1) or p | (y + 1). In the first case, we must have
q ∤ (y− 1), because if q | (y− 1) and p | (y− 1) then pq | (y− 1) as p, q are distinct primes, and this
contradicts n ∤ (y − 1). In the second case, we must have q ∤ (y + 1) as otherwise pq | (y + 1) but
n ∤ (y + 1). Since p is a common divisor of y ± 1 and n, we can compute gcd(n, y ± 1) = p (in the
first case, gcd(n, y − 1) = p and in the second case gcd(n, y + 1) = p). E.g. in the example y = 92
and gcd(403, 92 + 1) = 31 and gcd(403, 92− 1) = 13.

The best general factoring algorithm, The number field sieve uses this kind of idea to factor n.
The simplest factoring algorithm is trial division by all small primes up to some bound. Since any
composite n will have a prime factor ≤

√
n you only need to trial divide by

√
n. However, if n is

1024 bits then n ≈ 2512, there are far too many divisors to check. Trial division is feasible up to
240 or so, but becomes exponentially slower as n increases. We’ll cover some other attacks on RSA.
First, note that it is crucial that ϕ(n) is not publicly revealed. For suppose n = pq and ϕ(n) =
ϕ(pq) = ϕ(p)ϕ(q) = (p−1)(q−1). Then substitute q = n/p into this to get ϕ(n) = (p−1)(n/p−1) =
n− n/p− p+ 1 so, multiply by p to get p · ϕ(n) = np− n− p2 + p ⇒ p2 + (ϕ(n)− n− 1)p+ n = 0
which can be solved with the quadratic equation p = (n − ϕ(n) + 1 ±

√
(ϕ(n)− n− 1)2 − 4n)/2.

E.g., if n = 84773093 and ϕ(n) = 84754668 then p = (18246 ±
√
425104)/2 = 9213 ± 326, so p is

9539 or 8887.
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