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1 Euler’s Criterion

Let p be an odd prime. Then for any a ∈ Zp, the element a is a quadratic residue (QR) modulo p
if and only if

a
p−1
2 ≡ 1 (mod p).

Proof

(⇒) Suppose that there exists y such that

y2 ≡ a (mod p).

Raising both sides to the power p−1
2 gives(
y2
) p−1

2 ≡ yp−1 ≡ a
p−1
2 (mod p).

By Fermat’s Little Theorem, we have yp−1 ≡ 1 (mod p); hence,

a
p−1
2 ≡ 1 (mod p).

(⇐) Conversely, suppose that

a
p−1
2 ≡ 1 (mod p).

Let b be a primitive root (generator) of Z∗
p so that every nonzero element modulo p can be written

as a power of b. Then there exists some positive integer i for which

bi ≡ a (mod p).

It follows that

a
p−1
2 ≡

(
bi
) p−1

2 = b
i(p−1)

2 ≡ 1 (mod p).

Since the order of b is the order Z∗
p =p− 1, we deduce that i(p−1)

2 is a multiple of p− 1, so i
2 must

be an integer. Hence, i is even, say i = 2k. Then

a ≡ b2k (mod p),

so that ±bk are square roots of a modulo p. Thus, a is a quadratic residue.

To check whether a (mod p) is a quadratic residue, one can compute

a
p−1
2 (mod p)
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and verify that the result is 1. This computation requires O(log(p)) multiplications of numbers
having O(log p) bits each, costing a total of

O((log p)3)

bit operations.

Euler’s criterion can also be stated in the following convenient form:

a
p−1
2 ≡

(
a

p

)
(mod p),

where
(
a
p

)
is the Legendre symbol defined by

(
a

p

)
=


1 if a is a quadratic residue modulo p,

−1 if a is a non-quadratic residue modulo p,

0 if a ≡ 0 (mod p).

Generalization: The Jacobi Symbol

For any odd positive integer n, with prime factorization

n =
k∏

i=1

peii ,

the Jacobi symbol is defined by (a
n

)
=

k∏
i=1

(
a

pi

)ei

.

Example: Consider
9975 = 3 · 52 · 7 · 19.

Then, (
2

9975

)
=

(
2

3

)
·
(
2

5

)2

·
(
2

7

)
·
(

2

19

)
Using Euler’s criterion to compute the individual Legendre symbols, we have:(

2

9975

)
=

(
2

3−1
2 (mod 3)

)
·
(
2

5−1
2 (mod 5)

)2
·
(
2

2−1
2 (mod 7)

)
·
(
2

19−1
2 (mod 19)

)
= (−1) · (−1)2 · 1 · (−1)

= 1.

Note: The fact that
(
a
p

)
= 1 for an odd prime p implies that the congruence

y2 ≡ a (mod p)
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has a solution (for odd prime p); however, when n is composite the Jacobi symbol does not guarantee
the existence of such a solution.

The Jacobi symbol is especially useful in primality testing. In many cases for a composite n, one
finds that (a

n

)
̸≡ a

n−1
2 (mod n).

For example, one may observe that

2
9975−1

2 ≡ 9578 (mod 9975),

which does not equal the Legendre symbol
(

2
9975

)
= 1, thereby indicating that Euler’s criterion can

fail for composite moduli.

Similarly, consider n = 91 (n is composite) and a = 10:

Then, the Jacobi symbol is
(
10
91

)
, and using the Jacobi symbol properties:(

10

91

)
=

(
10

7

)
·
(
10

13

)
.

Using quadratic reciprocity, we compute:(
10

7

)
= −1,

(
10

13

)
= 1,

so (
10

91

)
= (−1) · 1 = −1.

Now, computing 10
91−1

2 (mod 91) gives:

10
91−1

2 ≡ 1045 ≡ −1 (mod 91).

Thus, we see that:

10
91−1

2 ≡
(
10

91

)
(mod 91).

Since this satisfies Euler’s criterion, it suggests that 91 could be prime, even though we know it is
composite. This situation is known as an Euler pseudoprime to base 10.

In fact, it can be shown that for a composite n, at least half of the choices a ∈ Z∗
n will expose the

compositeness of n.

The Solovay-Strassen Primality Test

To gain confidence that a given odd integer n is prime, one may test many random choices of a
using Euler’s criterion. If n passes many trials, it is declared a probable prime. This forms the basis
of the Solovay-Strassen algorithm.

Algorithm (Solovay-Strassen):

Input: An odd integer n > 1.
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1. Select a random integer a from {2, 3, . . . , n− 1}.
2. If gcd(a, n) > 1, then immediately return “composite”.
3. Compute

y := a
n−1
2 (mod n),

where y is represented in the symmetric range {−n−1
2 , . . . , n−1

2 }.
4. If y =

(
a
n

)
, then return “probably prime” (here

(
a
n

)
denotes the Jacobi symbol).

Otherwise, return “composite”.

Note: If n is prime, the algorithm always returns “probably prime.”

Note: Since a is randomly selected, and at least half of a ∈ Z∗
p will reveal n to not be prime if n

is composite, then each independent trial detects a composite n with probability at least 50%, so
the error probability after m independent tests is at most

(
1
2

)m
.

But how can we compute
(
a
n

)
in the last step of the algorithm?

The Jacobi symbol defined above supposes we already know the prime factorization of n.

Computing the Jacobi Symbol
(
a
n

)
Without Factorization

Even though the definition of the Jacobi symbol involves the prime factorization of n, it can be
computed without factoring n by using the following properties for any odd positive integer n:

1. Congruence Invariance: If m1 ≡ m2 (mod n), then(m1

n

)
=

(m2

n

)
.

2. Evaluation for 2: (
2

n

)
=

{
1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

3. Multiplicativity: For any integers m1 and m2,(m1m2

n

)
=

(m1

n

)
·
(m2

n

)
.

In particular, if a = 2k · t, then (a
n

)
=

(
2

n

)k

·
(
t

n

)
.

4. Quadratic Reciprocity: If m is odd, then

(m
n

)
=

{
−
(
n
m

)
if m ≡ n ≡ 3 (mod 4),(

n
m

)
otherwise.

Property 3 can be used to “factor out” multiples of 2 from a. Property 2 can evaluate 2
n . The

remaining t
n is handled with property 4, switching t and n, and n

t = n mod t
t (given by property 1),

which gives an expression with smaller numbers.
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So, using these properties, one can recursively reduce the computation of
(
a
n

)
to evaluations on

smaller numbers. The process is similar to the Euclidean algorithm and requires O(log n) modular
reductions on numbers of O(log n) bits, leading to an overall cost of

O((log n)3)

bit operations.

Error Probability Analysis via Bayes’ Theorem

To use this to generate an RSA key, we select a large random integer a and test it m times with
the Solovay-Strassen primality test algorithm. Assuming it passes all tests, what is the probability
that n is prime?

Suppose we define:

• A: the event that a random odd integer n in the interval [N, 2N ] is composite.
• B: the event that the algorithm outputs “prime” in m independent trials.

Since a is always selected randomly, each independent trial detects compositeness with probability
at least 1/2, so we have

P[B | A] ≤
(
1

2

)m

.

However, we want P[A | B], the probability that a is composite given that the test passes m times.
We get this from Baye’s theorem and an estimate of P[A].

We get P[A] from the prime number theorem. The number of primes in [N, 2N ] is about 2N
ln(2N) −

N
ln(N) ≡

n
ln(n) .

There are about N
2 ≡ n

2 odd numbers in [N, 2N ], so

P[Ā] ≡
n

ln(n)
n
2

=
2

ln(n)
,

and so P[A] = 1− 2
ln(n) .

Also,

P[b] = P[B | A] + P[B | Ā]P[Ā]

≥ P[B | Ā]P[Ā]

= 1 · 2

ln(n)
,

because for a prime n, the test never fails (P[B | Ā] = 1).
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So,

P[A | B] =
P[B | A]P[A]

P[B]

≤ 2−m ·
1− 2

ln(n)

2
ln(n)

= 2−m · ln(n)− 2

2

= 2−(m+1) · (ln(n)− 2).

Hence, as m grows, the exponent gets small very quickly.

For instance, if n is a 1024-bit number (n = 21024, so lnn ≈ 710), then taking m = 50 trials yields

P[A | B] ≤ 2−51(710− 2),

an extremely small probability.

Further Refinements: The Miller-Rabin Test

In practice, composite numbers rarely pass even a single trial of such a test. Moreover, the Solovay-
Strassen test can be improved upon by the Miller-Rabin test. The latter is based on the fact that
a prime p has exactly two square roots of 1, namely ±1. One can think of Euler’s criterion

a
n−1
2 ≡

(a
n

)
≡ ±1 (mod n)

as a “square root” version of Fermat’s little theorem (an−1 ≡ 1 (mod n) for prime n).

If an−1 ≡ 1 (mod n) and n−1
2 is even, then one can take an additional square root to obtain

an−1

4
≡ ±1 (mod n).

The Miller-Rabin test repeatedly takes square roots; if at any stage the square root is not ±1, then
n is composite.
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