
COMP 8920: Cryptography Winter 2025

Lecture 18 — March 13, 2025

Prof. Curtis Bright Scribe: Rajat Yadav

1 Group Theory and RSA

A group is an algebraic structure with a binary operation (e.g. multiplication) following:

• An identity exists (say 1)

• Every element x has an inverse x−1

• Associativity holds (x · y) · z = x · (y · z)

Examples include (Z,+), (Q \ {0},×), (Z∗
m,×).

The order of a group element g is the smallest positive integer m for which gm = 1.

Lagrange’s Theorem

For a group G with n elements, the order of g divides n (written g | n) and g divides n means that
n is a multiple of g, so there exists k ∈ Z with g · k = n.

Note: Z∗
m = {a ∈ Zm : gcd(a,m) = 1} is a group since a−1 mod m exists when a and m are

coprime and a−1 is found by EEA(a,m).

Note: |Z∗
m| = ϕ(m), so Lagrange’s Theorem says for all b ∈ Z∗

m

bϕ(m) ≡ 1 (mod m) (1)

A special case is Fermat’s Little Theorem: for all b ∈ Z∗
p for prime p

bp−1 ≡ 1 (mod p) (2)

Also, Z∗
p is known as a cyclic group, meaning that all elements in Z∗

p can be written as a power of
a generator α known as a primitive element having order p− 1, i.e.,

Z∗
p = {αi : 1 ≤ i ≤ p− 1} (3)

If β ∈ Z∗
p then ord(β) = (p − 1)/ gcd(p − 1, i) where β = αi. Thus, β is a primitive element when

i = logα β is prime to p− 1. This means there are ϕ(p− 1) primitive elements in Z∗
p.

There is no provably deterministic way to find a primitive element, but ϕ(p−1) ≈ (p−1)/ log log(p−
1), so you can usually find one just by trying random β ∈ Z∗

p. However, how to check if β is
primitive? Computing β2, β3, β4, . . . until you reach 1 would be very slow when p is large.

1

Theorem

If p > 2 is prime then α ∈ Z∗
p is primitive if and only if α(p−1)/q ̸≡ 1 (mod p) for all primes

q | (p− 1). If we know the prime divisors of (p− 1), this provides an efficient test if α is primitive.

Proof

(⇒): If α is primitive then αi mod p ̸= 1 for any i ∈ {1, . . . , p−2} and (p−1)/q is in {1, . . . , p−2}
as q > 1 and q < p− 1.

(⇐): Suppose α(p−1)/q ̸≡ 1 (mod p) for all primes q | (p− 1). Suppose α is not primitive, so it has
order d < p− 1. So, αd ≡ 1 (mod p) and d | (p− 1) by Lagrange’s Theorem. Since d | (p− 1) but
d ̸= p− 1, (p− 1)/d is an integer > 1.

So (p − 1)/d has some prime divisor, say q | (p − 1)/d. Rewriting this, we have ∃k ∈ Z such that
q · k = (p − 1)/d which implies d · k = (p − 1)/q. Since αd ≡ 1 (mod p), raising this to the power
k, we get αd·k = α(p−1)/q ≡ 1 (mod p), a contradiction. □

The RSA Cryptosystem

Let n = pq where p, q are distinct primes. Let e = P = Zn.

In practice, for security, p and q will be say 1024-bit primes.

Define the key set:
K = {(n, p, q, a, b) : ab ≡ 1 mod φ(n)}

For a key k = (n, p, q, a, b), define the encryption and decryption functions as:

ek(x) = xb mod n

dk(x) = xa mod n

The public key is (n, b), while the private key is (p, q, a). None of these values, nor φ(n), should be
revealed, or RSA will be insecure.

An adversary does not know p, q, or φ(n), so they cannot compute a = b−1 mod φ(n) using the
Extended Euclidean Algorithm (EEA).

To compute an RSA key, you would select two large random primes p and q first, then multiply
n = pq. Note this also allows us to find φ(n), Since φ(p, q) = φ(p)φ(q) = (p − 1)(q − 1). Select a
random b ∈ Z∗

φ(n)) then compute a = b−1 mod φ(n) using the EEA.

Why are dk and ek inverse functions?

We need to show that:
xab ≡ x mod n

for all x ∈ Z∗
n, which is the only case that is important in practice. This also holds for all x ∈ Zn

(exercise).

2

Since ab ≡ 1 mod φ(n), we can write:

ab = 1 + tφ(n) for some integer t.

Thus,
xab = x1+tφ(n) ≡ x(xφ(n))t mod n.

By Lagrange’s theorem, we know that:

xφ(n) ≡ 1 mod n.

Therefore,
x(xφ(n))t ≡ x · 1t ≡ x mod n.

Security Considerations

The best factoring algorithms can currently factor RSA moduli up to around 768 bits. This means
that p, q should each be at least 384 bits long.

Multiprecision arithmetic is required to perform computations with numbers of this size, as n will
not fit within a single CPU word (typically 64-bit words are used in modern CPUs).

3

	Group Theory and RSA

