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1 Group Theory and RSA

A group is an algebraic structure with a binary operation (e.g. multiplication) following:

e An identity exists (say 1)

e Every element x has an inverse z~*

e Associativity holds (z-y)-z=z-(y- 2)

Examples include (Z,+), (Q\ {0}, x), (Z;,, x).

The order of a group element g is the smallest positive integer m for which ¢ = 1.

Lagrange’s Theorem
For a group G with n elements, the order of ¢g divides n (written g | n) and g divides n means that
n is a multiple of g, so there exists k € Z with g - k = n.

Note: Z!, = {a € Zy, : ged(a,m) = 1} is a group since a~! mod m exists when a and m are
coprime and a~! is found by EEA(a, m).

Note: |Z},| = ¢(m), so Lagrange’s Theorem says for all b € Z7,

b =1 (mod m) (1)

A special case is Fermat’s Little Theorem: for all b € Z; for prime p

¥ 1=1 (mod p) (2)

Also, Z, is known as a cyclic group, meaning that all elements in Z; can be written as a power of
a generator o known as a primitive element having order p — 1, i.e.,

Zh={a":1<i<p-1} (3)

If 8 € Zj, then ord(8) = (p — 1)/ ged(p — 1,7) where 8 = a'. Thus, 3 is a primitive element when
i = log,, (B is prime to p — 1. This means there are ¢(p — 1) primitive elements in L,

There is no provably deterministic way to find a primitive element, but ¢(p—1) =~ (p—1)/loglog(p—
1), so you can usually find one just by trying random g € Z;. However, how to check if 3 is
primitive? Computing 32, 5%, 3%, ... until you reach 1 would be very slow when p is large.



Theorem

If p > 2 is prime then a € Zj is primitive if and only if aP=1/4 £ 1 (mod p) for all primes
q| (p—1). If we know the prime divisors of (p — 1), this provides an efficient test if « is primitive.

Proof

(=): If a is primitive then o’ mod p # 1 for any i € {1,...,p—2} and (p—1)/qgisin {1,...,p—2}
asg>land g<p—1.

(«<): Suppose aP~1)/2 %£ 1 (mod p) for all primes ¢ | (p— 1). Suppose « is not primitive, so it has

order d < p—1. So, a® =1 (mod p) and d | (p — 1) by Lagrange’s Theorem. Since d | (p — 1) but
d#p—1,(p—1)/dis an integer > 1.

So (p — 1)/d has some prime divisor, say ¢ | (p — 1)/d. Rewriting this, we have 3k € Z such that

q-k = (p—1)/d which implies d -k = (p — 1)/q. Since a® = 1 (mod p), raising this to the power
k, we get otk = oP~D/1 =1 (mod p), a contradiction. O

The RSA Cryptosystem

Let n = pq where p, ¢ are distinct primes. Let e = P = Z,.
In practice, for security, p and ¢ will be say 1024-bit primes.

Define the key set:
K ={(n.p,q,a,b) :ab=1 mod ¢(n)}

For a key k = (n,p, q,a,b), define the encryption and decryption functions as:

b

ex(z) =2” modn

di(x) =z* mod n

The public key is (n, b), while the private key is (p, ¢, a). None of these values, nor ¢(n), should be
revealed, or RSA will be insecure.

An adversary does not know p, ¢, or (n), so they cannot compute a = b=! mod ¢(n) using the
Extended Euclidean Algorithm (EEA).

To compute an RSA key, you would select two large random primes p and ¢ first, then multiply
n = pq. Note this also allows us to find ¢(n), Since ¢(p,q) = ¢(p)p(q) = (p — 1)(¢ — 1). Select a
random b € Zg ) then compute a = b~! mod ¢(n) using the EEA.

n)

Why are d;, and ¢, inverse functions?

We need to show that:

=2 modn

for all x € Z*

», which is the only case that is important in practice. This also holds for all z € Z,
(exercise).



Since ab =1 mod ¢(n), we can write:

ab =1+ tp(n) for some integer ¢.

Thus,
2% = 1) = 12 mod n.

By Lagrange’s theorem, we know that:
22 =1 mod n.

Therefore,
2z =2 1'=2 mod n.

Security Considerations
The best factoring algorithms can currently factor RSA moduli up to around 768 bits. This means
that p, ¢ should each be at least 384 bits long.

Multiprecision arithmetic is required to perform computations with numbers of this size, as n will
not fit within a single CPU word (typically 64-bit words are used in modern CPUs).
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