COMP 8920: Cryptography

Winter 2025

Lecture 17 — March 11, 2025

Prof. Curtis Bright

Scribe: Rajat Yadav

1 Public Key Cryptography and RSA

The idea of public key cryptography was proposed by Diffie-Hellman in 1976, and in 1977 the RSA cryptosystem was proposed and is still in use today. Bob's encryption function e_k should be efficient to compute, but the inverse e_k^{-1} should only be efficient to compute for Bob, who has some secret information that enables him to compute it efficiently.

In RSA, encryption is done via $f: \mathbb{Z}_n \to \mathbb{Z}_n$ of the form $x \mapsto x^b \mod n$ where $n = p \cdot q$ for primes p, q. Computing f^{-1} is difficult if you just know n, but if you also know p, q then the inverse can be computed efficiently.

2 Number Theory Background

The Euclidean Algorithm finds the greatest common divisor (gcd) of two numbers, and the extended Euclidean algorithm (EEA) allows us to compute the inverse of a number $a^{-1} \mod n$. Recall that $a^{-1} \in \mathbb{Z}_n$ is defined so $a \cdot a^{-1} \equiv 1 \pmod{n}$, and it exists when $\gcd(a, n) = 1$.

 \mathbb{Z}_n is the numbers mod n. \mathbb{Z}_n^* is the numbers mod n with an inverse. $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$; its size $|\mathbb{Z}_n^*| = \phi(n)$ where ϕ is Euler's phi function.

2.1 Euclidean Algorithm

Input: $a, b \in \mathbb{Z}^+$

Set $r_0 := a, r_1 := b$, and write:

$$r_0 = q_1 r_1 + r_2$$
 where $0 \le r_2 < r_1$ (1)

$$r_1 = q_2 r_2 + r_3 \tag{2}$$

$$\vdots (3)$$

$$r_{m-2} = q_{m-1}r_{m-1} + r_m (4)$$

$$r_{m-1} = q_m r_m \tag{5}$$

Output: r_m

Note:

$$\gcd(a,b) = \gcd(r_0, r_1) \tag{6}$$

$$=\gcd(r_0-q_1r_1,r_1)\tag{7}$$

$$=\gcd(r_2,r_1)\tag{8}$$

$$=\gcd(r_1,r_2)\tag{9}$$

$$=\gcd(r_1 - q_2 r_2, r_2) \tag{10}$$

$$=\gcd(r_3,r_2)\tag{11}$$

$$\vdots (12)$$

$$=\gcd(r_{m-1},r_m)\tag{13}$$

$$=\gcd(r_m,0)=r_m\tag{14}$$

2.2 Extended Euclidean Algorithm

We can now tell if $a^{-1} \mod n$ exists by computing gcd(a, n), but how do we find a^{-1} ? We run the same computation but store some extra information, storing the r_i as a weighted sum of a and b. Note it is easy to write r_0, r_1 as a sum of a and b:

$$r_0 = 1 \cdot a + 0 \cdot b = s_0 \cdot a + t_0 \cdot b \tag{15}$$

$$r_1 = 0 \cdot a + 1 \cdot b = s_1 \cdot a + t_1 \cdot b \tag{16}$$

To form r_2 , subtract $q_1 \cdot r_1$ from r_0 :

$$r_2 = r_0 - q_1 r_1 = 1 \cdot a + (-q_1) \cdot b = s_2 \cdot a + t_2 \cdot b \tag{17}$$

Proceeding in this way by subtracting $q_j \cdot r_{j-1}$ from r_{j-2} , we find $r_j = s_j a + t_j \cdot b$ where s_j and t_j are integers found via:

$$t_j = t_{j-2} - q_{j-1} \cdot t_{j-1} \tag{18}$$

$$s_{i} = s_{i-2} - q_{i-1} \cdot s_{i-1} \tag{19}$$

with $(s_0, t_0) = (1, 0)$ and $(s_1, t_1) = (0, 1)$.

Then EEA(a, b) returns (r_m, s_m, t_m) .

Why is this useful? To compute $a^{-1} \mod n$, run EEA(a, n) which gives s, t with:

$$1 = s \cdot a + t \cdot n \equiv s \cdot a \pmod{n} \tag{20}$$

So $a^{-1} \mod n = s$.

2.3 Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem is a method of solving systems of congruences of the form:

$$x \equiv a_1 \pmod{m_1} \tag{21}$$

$$x \equiv a_2 \pmod{m_2} \tag{22}$$

$$\vdots (23)$$

$$x \equiv a_r \pmod{m_r} \tag{24}$$

where all m_i 's are pairwise coprime. The CRT says this has a unique solution modulo $M = m_1 \times \cdots \times m_r$, and CRT gives a formula for x.

Consider the "projection" $\chi: \mathbb{Z}_M \to \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_r}$:

$$\chi(x) = (x \bmod m_1, \dots, x \bmod m_r) \tag{25}$$

CRT essentially says χ is a bijection and gives a formula for χ^{-1} .

For $1 \le i \le r$, define:

$$M_i = M/m_i = \prod_{j=1, j \neq i}^r m_j \in \mathbb{Z}$$

$$(26)$$

Also note $gcd(M_i, m_i) = 1$ since $gcd(m_j, m_i) = 1$ for all $j \neq i$. Thus, we can define $y_i = M_i^{-1} \mod m_i$ and find y_i with $EEA(m_i, M_i)$.

Now define $\rho: \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_r} \to \mathbb{Z}_M$ by:

$$(a_1, \dots, a_r) \mapsto \sum_{i=1}^r a_i M_i y_i \bmod M$$
 (27)

The system of congruences is equivalent to solving $\chi(x) = (a_1, \ldots, a_r)$, and the system has the general solution $x = \rho(a_1, \ldots, a_r)$.

First, we'll show $X = \rho(a_1, \ldots, a_r)$ is a solution of all congruences $x \equiv a_i \pmod{m_i}$. For concreteness, we'll just show $X \equiv a_1 \pmod{m_1}$, but the argument is the same for all m_i .

Note:

$$X = (a_1 M_1 y_1 + \sum_{i=2}^{r} a_i M_i y_i) \bmod M$$
(28)

Note $m_1|M_i$ for all $2 \le i \le r$ (here | means "divides"), so $M_i \equiv 0 \pmod{m_1}$ and $\sum_{i=2}^r a_i M_i y_i \equiv 0 \pmod{m_1}$. Also $y_1 = M_1^{-1} \pmod{m_1}$, so $M_1 y_1 \equiv 1 \pmod{m_1}$, and thus $X \equiv a_1 \pmod{m_1}$.

Now we just need to show that X is the only solution of $\chi(x) = (a_1, \ldots, a_r)$. We just showed this map χ is surjective (onto) since χ maps X to (a_1, \ldots, a_r) for any values of a_i 's. But the domain \mathbb{Z}_M and codomain $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_r}$ are the same size, so χ must also be injective and hence a bijection, with $\chi(\rho(a_1, \ldots, a_r)) = (a_1, \ldots, a_r)$, i.e., $\rho = \chi^{-1}$.

For RSA, we'll work in \mathbb{Z}_n where $n = p \cdot q$ for primes p, q. Since gcd(p, q) = 1, CRT says \mathbb{Z}_n is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_q$.