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1 Public Key Cryptography and RSA

The idea of public key cryptography was proposed by Diffie-Hellman in 1976, and in 1977 the RSA
cryptosystem was proposed and is still in use today. Bob’s encryption function ek should be efficient
to compute, but the inverse e−1

k should only be efficient to compute for Bob, who has some secret
information that enables him to compute it efficiently.

In RSA, encryption is done via f : Zn → Zn of the form x 7→ xb mod n where n = p · q for primes
p, q. Computing f−1 is difficult if you just know n, but if you also know p, q then the inverse can
be computed efficiently.

2 Number Theory Background

The Euclidean Algorithm finds the greatest common divisor (gcd) of two numbers, and the extended
Euclidean algorithm (EEA) allows us to compute the inverse of a number a−1 mod n. Recall that
a−1 ∈ Zn is defined so a · a−1 ≡ 1 (mod n), and it exists when gcd(a, n) = 1.

Zn is the numbers modn. Z∗
n is the numbers modn with an inverse. Z∗

n = {a ∈ Zn : gcd(a, n) =
1}; its size |Z∗

n| = ϕ(n) where ϕ is Euler’s phi function.

2.1 Euclidean Algorithm

Input: a, b ∈ Z+

Set r0 := a, r1 := b, and write:

r0 = q1r1 + r2 where 0 ≤ r2 < r1 (1)

r1 = q2r2 + r3 (2)

... (3)

rm−2 = qm−1rm−1 + rm (4)

rm−1 = qmrm (5)

Output: rm
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Note:

gcd(a, b) = gcd(r0, r1) (6)

= gcd(r0 − q1r1, r1) (7)

= gcd(r2, r1) (8)

= gcd(r1, r2) (9)

= gcd(r1 − q2r2, r2) (10)

= gcd(r3, r2) (11)

... (12)

= gcd(rm−1, rm) (13)

= gcd(rm, 0) = rm (14)

2.2 Extended Euclidean Algorithm

We can now tell if a−1 mod n exists by computing gcd(a, n), but how do we find a−1? We run the
same computation but store some extra information, storing the ri as a weighted sum of a and b.
Note it is easy to write r0, r1 as a sum of a and b:

r0 = 1 · a+ 0 · b = s0 · a+ t0 · b (15)

r1 = 0 · a+ 1 · b = s1 · a+ t1 · b (16)

To form r2, subtract q1 · r1 from r0:

r2 = r0 − q1r1 = 1 · a+ (−q1) · b = s2 · a+ t2 · b (17)

Proceeding in this way by subtracting qj · rj−1 from rj−2, we find rj = sja+ tj · b where sj and tj
are integers found via:

tj = tj−2 − qj−1 · tj−1 (18)

sj = sj−2 − qj−1 · sj−1 (19)

with (s0, t0) = (1, 0) and (s1, t1) = (0, 1).

Then EEA(a, b) returns (rm, sm, tm).

Why is this useful? To compute a−1 mod n, run EEA(a, n) which gives s, t with:

1 = s · a+ t · n ≡ s · a (mod n) (20)

So a−1 mod n = s.
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2.3 Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem is a method of solving systems of congruences of the form:

x ≡ a1 (mod m1) (21)

x ≡ a2 (mod m2) (22)

... (23)

x ≡ ar (mod mr) (24)

where all mi’s are pairwise coprime. The CRT says this has a unique solution modulo M =
m1 × · · · ×mr, and CRT gives a formula for x.

Consider the “projection” χ : ZM → Zm1 × · · · × Zmr :

χ(x) = (x mod m1, . . . , x mod mr) (25)

CRT essentially says χ is a bijection and gives a formula for χ−1.

For 1 ≤ i ≤ r, define:

Mi = M/mi =
r∏

j=1,j ̸=i

mj ∈ Z (26)

Also note gcd(Mi,mi) = 1 since gcd(mj ,mi) = 1 for all j ̸= i. Thus, we can define yi = M−1
i mod

mi and find yi with EEA(mi,Mi).

Now define ρ : Zm1 × · · · × Zmr → ZM by:

(a1, . . . , ar) 7→
r∑

i=1

aiMiyi mod M (27)

The system of congruences is equivalent to solving χ(x) = (a1, . . . , ar), and the system has the
general solution x = ρ(a1, . . . , ar).

First, we’ll show X = ρ(a1, . . . , ar) is a solution of all congruences x ≡ ai (mod mi). For concrete-
ness, we’ll just show X ≡ a1 (mod m1), but the argument is the same for all mi.

Note:

X = (a1M1y1 +

r∑
i=2

aiMiyi) mod M (28)

Note m1|Mi for all 2 ≤ i ≤ r (here | means “divides”), so Mi ≡ 0 (mod m1) and
∑r

i=2 aiMiyi ≡ 0
(mod m1). Also y1 = M−1

1 mod m1, so M1y1 ≡ 1 (mod m1), and thus X ≡ a1 (mod m1).

Now we just need to show that X is the only solution of χ(x) = (a1, . . . , ar). We just showed this
map χ is surjective (onto) since χ maps X to (a1, . . . , ar) for any values of ai’s. But the domain ZM

and codomain Zm1 × · · ·×Zmr are the same size, so χ must also be injective and hence a bijection,
with χ(ρ(a1, . . . , ar)) = (a1, . . . , ar), i.e., ρ = χ−1.

For RSA, we’ll work in Zn where n = p · q for primes p, q. Since gcd(p, q) = 1, CRT says Zn is
isomorphic to Zp × Zq.
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