
COMP 8920: Cryptography Winter 2025

Lecture 16 — March 6, 2025

Prof. Curtis Bright Scribe: Rajat Yadav

Last class, we saw how to generate a MAC using a hash function like SHA-1. Another way of
generating MAC is to prepend the key to a message and use a hash function based on the sponge
construction like SHA-3, which is not susceptible to a length extension attack, as knowledge of
hk(x) doesn’t help you compute hk(x∥x′) unlike in the merkel-damgard construction.

Another popular way of constructing a MAC uses a block cipher in CBC mode with a fixed IV.
Recall in CBC mode each ciphertext block yi is XORed with the next plaintext before encyption,
so far x = x1, . . . , xn. We have

y0 = IV (1)

y1 = ek(y0 ⊕ x1) (2)

... (3)

yn = ek(yn−1 ⊕ xn) (4)

CBC-MAC(x, k) are discarded. The best known attack in CBC-MAC is a birthday chosen message
attack. Eve requests the tags of a large number of messages and if a duplicate is ever found, Eve
needs only one more request in order to forge a tag.

Suppose the block length is t and let x3, x4, . . . , xn ∈ Zt
z be fixed. Eve choses Q distinct elements of

Zt
2 (where Q ≈ 1.17

√
2x) and call them x11, x

2
2, . . . , x

1
Q; these will form the first block of the messages

she’ll construct. Also let x21, . . . , x
2
2 be chosen randomly in Zt

2 (these will be the 2nd blocks).

Now define

xi = xi1 ∥ xi2 ∥ x3 ∥ x4 ∥ . . . ∥ xn (5)

for 1 ≤ i ≤ Q. Eve requests tags for all xi, and with 50% chance 2 have the same tag.

In the process of finding the tags for xi, the oracle will find the values yi0, . . . , yn(i) and output yin
as the tag. Suppose 2 tags match i.e. yin = yjn for 1 ≤ i < j ≤ Q. Because the last n-2 blocks of
the xis are identical, this implies that

yi2 = yj2,∧ (6)

yi2 = ek(y
i
i ⊕ xi2) ∧ yj2 = ek(y

j
j ⊕ xj2) (7)

so applying Qk to both sides, we get

yi1 ⊕ xi2 = yj1 ⊕ xj2 (8)

. Since xi2 ∧ xj2 were chosen randomly, with 1
2 probability this will happen. Now let δ ∈ Zt

2 be a
nonzero bitstring. XOR δ with second block of xi ∧ xj to get

u = xi1 ∥ (xi2 ⊕ δ) ∥ x3 ∥ . . . ∥ xn (9)

x = xj1 ∥ xj2 ⊕ δ ∥ x3 ∥ . . . ∥ xn (10)

1



Eve requests the tag for u, but then can use it as forgery for the tag of v, since u and v have the

same tag. Note u ̸= v since xi1 ̸= xj1. This attack is a
(
1
2 , O

(
2

t
2

))
- forger. So for, we’ve only used

a MAC to provide data integrity, but it is often used with encryption, achieving secrecy as well.
This is called authenticated encryption, and there are 3 obvious ways to combine a MAC with
encryption. (We’ll use seprate keys for the MAC and encryption.)

1. MAC-and-encrypt

For message x, compute z = hk1(x) and y = ek2(x) and send (y, z). Bob decrypt y and checks
z is a valid tag for y’s encryption.

2. MAC-then-encrypt

Still z = hk1(x) but the plaintext to encrypt incorportates the z: y = ek2(x ∥ z), and only y
is sent. Bob decrypts y to get x ∥ z and checks z is the tag of x.

3. Encrypt-then-MAC

Now first compute y = ek2(x) and then the tag is z = hk1(y), and send (y, z). Bob checks z
is the tag of y, and if so, will decrypt y.

Method 3 is usually the best it can be shown if the MAC and encryption are individually secure,
then the method is also secure, but this is not always true is methods 1 and 2. Also, onlly in method
3 can decryption be skipped if the tag is invalid. The CCM (counter with CBC-MAC) mode is
a NIST standard providing authenticated encryption. It combines CTR mode a tag computed by
CBC-MAC.

Suppose x = x1, . . . , xn is the plaintext with each xi ∈ Zm
2 . As in CTR mode, a initial value ctr is

chosen by Alice and sent to Bob in plaintext. It is important that ctr is never repeated with same
key, otherwise Eve can learn the XOR of your messages encrypted with same key and ctr.

Starting from ctr, we construct T0, . . . , Tn with Ti = (ctr + i) mod 2m. The ciphertext blocks are
encrypted with

yi = xi ⊕ ek(Yi). (11)

Then compute the tag temp = CBC-MAC(x, k) and y′ = temp ⊕ ek(T0) The encrypted tag is
appended to the ciphertext, y = y1 ∥ . . . ∥ yn ∥ y′. Bob computes ek(T0), . . . , ek(Tn) and then finds
xi = yi ⊕ rk(T1) . . . xn = yn ⊕ ek(Tn), obtaining x. Then Bob computes CBC-MAC(x, k) and XORs
it with ek(T0) to check the tag is valid.

We now discuss public-key cryptography and the RSA cryptosystem, the first example of a cryp-
tosystem where the encryption and decryption keys are different, with the encryption key publically
known. Thus, anyone can securely send a message to anyone for which they have the public key.
When Alice wants to send a message to Bob, it is essential she has his actual public key and not an
attacker’s. In practice, public keys are digitally signed using certificates to verfy their authenticity.

2


