
COMP 8920: Cryptography Winter 2025

Lecture 14 — Feb 27, 2025

Prof. Curtis Bright Scribe: Aidan Bennett

Overview

In the last lecture we introduced the Merkle-Damg̊ard construction.

In this lecture we finish our discussion of the Merkle-Damg̊ard construction, and introduce the
sponge construction.

Merkle-Damg̊ard construction (continued)

Suppose c : Zm+1
2 → Zm

2 is a compression function and

f(xi) =

{
0 if xi = 0

01 if xi = 1

and y(x1 . . . xn) = 11||f(x1)|| . . . ||f(xn) = y1 . . . yk, where yi ∈ Z2.

g1 = c(0m||y) ∈ Zm
2

g2 = c(g1||y2)
...

gk = c(gk−1||yk) = h(x)

Theorem 1. If c : Zm+1
2 → Zm

2 is collision resistant, then h :
⋃∞

i=m+1 Zi
2 → Zm

2 will also be.

Proof. (by contraposition)

Suppose we have a collision (x, x′) of h. Let y(x) = y1 . . . yk and y(x′) = y′1 . . . y
′
ℓ. If k = ℓ, following

the same strategy as before, we obtain a collision for c or obtain that y = y′. But y = y′ implies
that x = x′ (since y injective), which would be a contradiction. Thus, we suppose ℓ ̸= k and WLOG
that ℓ > k. We have gk = g′ℓ (because it’s a collision), so c(gk−1||yk) = c(g′ℓ−1||y′ℓ) which is either a
collision for c or gk−1 = g′ℓ−1 and yk = y′ℓ.

Assuming we don’t find collisions for c in this way, we eventually achieve

yk = y′ℓ, yk−1 = y′ℓ−1, . . . , y1 = y′ℓ−k+1

which implies that y1y2 . . . yk is a suffix of y′1 . . . y
′
ℓ, which is not possible due to the construction

of y.

1

Figure 1: Sponge function circuit diagram (source)

Many common hash functions follow the Merkle-Damg̊ard approach, including MD4, MD5, SHA-
0 (all broken), and SHA-1, SHA-2. The first collision for SHA-1 was found in 2017 with about
280/105 trials, 105 times faster than brute force, as SHA-1 uses a 160-bit digest. The padding
scheme of SHA-1 extends the input by at most one extra 512-bit block, and uses a compression
function c : Z160+512

2 → Z512
2 . So the message is split into 512-bit blocks. The function c uses

bitwise operations and integer mod 232.

The sponge construction

The sponge construction is another way of constructing a hash function and is used in SHA-3.
Instead of a compression function, the sponge construction is built from a function f : Zb

2 → Zb
2

that is typically a bijection. The parameter b is called the width, and b = r + c where r is the
bitrate and c is the capacity. The larger c is, the more secure the hash function will be against
birthday attacks. The message is processed r bits at a time, so the smaller r is, the less efficient
the function will be.

The sponge function f uses the circuit as depicted in Figure 1.

Note the advantage of this construction is that it can produce digests of arbitrary size, just by
increasing the length of the squeezing phase. However, note that the security of the function will
be dependent on c, so increasing the message digest length can’t be said to make the function more
secure in general.

We will now show how to find a collision of this hash function in an expected 2
c
2 evaluations. The

collision is known as an internal collision since it will be a collision in the b-bit state of the sponge
function, rather than just a collision of its output. Suppose x0 = 0 . . . 0︸ ︷︷ ︸

r

= 0r and y0 = 0 . . . 0︸ ︷︷ ︸
c

= 0c

2

https://keccak.team/sponge_duplex.html

and we perform the following iteration:

f(x0||y0) = x1||y1
f(x1||y1) = x2||y2

...

f(x0||yk−1) = xk||yk

where |xi| = r, and |yi| = c. We stop wehn we find a repeated y-value, say yk = yh where h < k.
This is just a birthday attack on f where inputs always start with 0r. We expect a collision after
2

c
2 iterations. After this, we have a pair (yk, yh) with f(0r||yk) = f(0r||yh).

Now consider the messages m = x0|| . . . ||xh and m′ = x0|| . . . ||xk. To find the digest for m, note

State 1: f(x0 ⊕ x0||y0) = f(0r||y0) = x1||y1
State 2: f(x1 ⊕ x1||y1) = f(0r||y1) = x2||y2
State 3: f(x2 ⊕ x2||y2) = f(0r||y2) = x3||y3

But, similarly for m′, the kth state is xk||yk, so the output of the absorbing phase here
is xk+1||yk+1 = f(xk ⊕ xk||yk) = f(0r||yk).

3

