
COMP 8920: Cryptography Winter 2025

Lecture 11 — February 11, 2025

Prof. Curtis Bright Scribe: Aidan Bennett

Overview

In the last lecture we introduced hash functions and defined what it meant for a hash function to
be secure.

In this lecture we talk more about hash functions, and the random oracle model.

Hash functions (continued)

If a hash function is well designed, the only way to find the value h(x) should be to evaluate h at x,
even if many h(x1), h(x2), etc. are already known. As an example of an h not having this property,
suppose h : Zn×Zn → Zn is the linear function (x, y) 7→ ax+ by mod n. If we have h(x1, y1) = z1
and h(x2, y2) = z2 then for all for all r, s ∈ Zn, we have in Zn:

h(rx1 + sx2, ry1 + sy2) = a(rx1 + sx2) + b(ry1 + sy2)

= r(ax1 + by1) + s(ax2 + by2)

= rh(x1, y1) + sh(x2, y2)

= rz1 + sz2

So h can be evaluated at other values “directly” without calling h.

The random oracle model is a model of an ideal hash function h : X → Y, chosen randomly from
FX ,Y (the set of functions from X to Y), and we can only evaluate h via a black box “oracle”.

Theorem 1. If h ∈ FX ,Y is chosen randomly, and X0 ⊆ X is a set of values for which h(x) is
known for x ∈ X0, then Pr[h(x) = y] = 1

|y| for all x ∈ X\X0, and y ∈ Y.

Proof. (Theorem 5.1 in textbook)

The reason this is true is because h is chosen uniformly at random. You can think of it like a black
box that outputs a uniformly random y ∈ Y given any input x, the only constraint is that it doesn’t
contradict itself; i.e., if you give it the same x twice, it returns the same output, but on each new
input the output is selected randomly.

Randomized algorithms can make choices; a Las Vegas algorithm is a randomized algorithm that
can output “failure” with some probability, but if it gives a non-failure then its output must be
correct.

1

An (ε,Q)-algorithm denotes an L.V. algorithm with average-case success probability ε and uses Q
oracle calls of h. The success probability is over all random choices of h and x and/or y if they are
part of the problem. A naive algorithm for the pre-image is seen in Algorithm 1.

Algorithm 1 Trivial algorithm for pre-image

Given h and a digest y, and a number of oracle calls Q
Randomly select X0 ⊆ X of size Q.
for x ∈ X0 do

if h(x) = y then
return x

else
return failure

end if
end for

Theorem 2. The average case probability of success for this algorithm is

ε = 1−
(
1− 1

m

)Q

where m = |Y|

Proof. Fix y ∈ Y. Let X0 = {x1, . . . , xQ} and let Ei denote the event that h(xi) = y. By theorem
5.1, the Ei’s are independent and Pr[Ei] =

1
m , so Pr[Ei] = 1− 1

m is the probability that Ei doesn’t
happen. Then

Pr[E1 ∨ . . . ∨ EQ] = 1− Pr[E1 ∧ . . . ∧ EQ]

= 1−
(
1− 1

m

)Q

For any fixed y the success probability is given by the above formula, so the average case success
probability is this as well.

Note 1−
(
1− 1

m

)Q ≈ 1−
(
1− Q

m

)
= Q

m when Q is small compared to m.

We can give a similar algorithm for 2nd preimage in Algorithm 2.

Algorithm 2 Trivial algorithm for 2nd pre-image

Given h, x,Q
y ← h(x)
Select X0 ⊆ X\{x}, with |X0| = Q− 1
for x0 ∈ X do

if h(x0) = y then
return x0

end if
end for
return failure

This has success probability 1 −
(
1− 1

m

)Q−1
. Finally, the algorithm for finding any collision in

Algorithm 3:

2

Algorithm 3 Trivial algorithm for collision finding

Given hash h and oracle query limit Q
Define lookup table L
for x ∈ X0 do yx ← h(x)

if yx ∈ L then
return (x, x′) ▷ Return x’s that cause collision

else
L ← yx

end if
end for
return failure

The probability of success of this works out in a similar way to the “birthday paradox”; how large
does a group of people need to be before there is a 50% chance that two people share the same
birthday?

Theorem 3. The chance of finding a collision with this algorithm is

1−
(
m− 1

m

)(
m− 2

m

)
. . .

(
m−Q− 1

m

)

Proof. The chance of not finding a collision after selecting 2 distinct x1, x2 ∈ X0 is m−1
m as there

are m possibilities for x2 and m− 1 of those are failures.

However, the probability of failure when the third x3 ∈ X0 is selected is m−2
m as there are M choices

for h(x3), and m− 2 do not lead to a collision. So, the probability that no collision is found after
Q selections of x1, . . . , xQ is

Q−1∏
i=0

m− i

m

The chance of success is 1 minus this.

Note 1− x ≈ e−x for small x, so

Q−1∏
i=0

(
1− i

m

)
≈

Q−1∏
i=0

e−
i
m

= e−
∑Q−1

i=0
i
m

= e−
Q(Q−1)

2m

≈ e−
Q2

2m

So the probability that at least one collision is found is ε = 1 − e−
Q2

2m . Solving for Q, we have

−Q2

2m ≈ ln(1−ε), or Q ≈
√

2m ln
(

1
1−ε

)
. So for a 50% chance of success we need Q ≈

√
2 ln(2)m ≈

1.17
√
m.

So, you expect to query around
√
m hashes before you have a 50% chance of finding a collision.

Thus for a 160-bit hash, you would need to evaluate about 280 times. This is easier than the

3

preimage or the 2nd preimage problems, which need about Q ≈ m
2 queries to succeed with 50%

chance.

4

