
COMP 8920: Cryptography Winter 2025

Lecture 10 — Feb 6, 2025

Prof. Curtis Bright Scribe: Mahzabin Chowdhury

Overview

Continuing the Attack on a Combination Generator

Say, we have the LFSRs whose degrees are L1, L2, L3. The total key length is L = L1 +L2 +L3.

Known Plaintext Attack on the LFSR Generator

Using the known plaintext attack on the LFSR generator with a message of length L, we can
compute the first L bits of the keystream Z1, . . . , ZL. However, this does not reveal the key, which
consists of the initial values of each of the LFSRs.

We could perform an exhaustive search, over all 2L = 2L1+L2+L3 possible keys, but this is inefficient.
By exploiting the fact that the bits output by this generator have a strong correlation with the bits
output by each individual LFSR, a more efficient approach can be used.

The idea is to search over all 2L1 (here 24) keys for the first LFSR and generate L bits of output for
each. For the correct key, about 3

4 of its bits are expected to correspond with the keystream derived
from the known plaintext attack. For an incorrect key, the match probability is 1

2 . Once the key
to the first LFSR is found, the same approach can be applied to the second and third LFSRs.

Example

Suppose the first LFSR is defined by:

qi = qi−3 + qi−5

in Z2 (degree 5).
We iterate over all possible starting values (a1, . . . , a5) ∈ Z5

2 \ {(0, 0, 0, 0, 0)}.

1

Of which there are 25−1 = 31 possible values. For example, suppose (a1, . . . , a5) = (0, 1, 1, 0, 1). If
there are 24 matches ai = zi for i ≤ 30, and all other keys have at most 19 matches, then we likely
know the initial values of LFSR 1. The other LFSRs are handled independently, resulting in:

(2L1 − 1) + (2L2 − 1) + (2L3 − 1)

Total keys examined. Which is much better than 2L1+L2+L3 − 1.

Attack on a Filter Generator

We describe an algebraic attack assuming, enough bits of the keystream are known, as well as the
recurrence and filtering function f . The key is the initial state of the LFSR.

Example

Suppose the recurrence is:
Zi+4 = Zi+1 + Zi for i ≥ 0,

and the filtering function is defined as:

f(a, b, c, d) = ab+ cd.

Suppose, the first 10 bits of the keystream are s1, . . . , s10 = 0000010100. Thus:

f(z0, z1, z2, z3) = z0z1 + z2z3 = s0 = 0,

f(z1, z2, z3, z4) = f(z1, z2, z3, z1 + z0)

= z1z2 + z3(z1 + z0)

= z1z2 + z0z3 + z1z3

= s1 = 0.

In general:

(zi+1, zi+2, zi+3, zi+4) = (zi, zi+1, zi+2, zi+3) ·


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 .

︸ ︷︷ ︸
(denoted A)

Thus,
(zn, zn+1, zn+2, zn+3) = (z0, z1, z2, z3) ·An,

so the n-th keystream bit is:
Sn = f((z0, z1, z2, z3) ·An).

2

Taking 0 ≤ n ≤ 9, we derive polynomial equations in z0, z1, z2, z3:

z0z1 + z2z3 = 0,

z0z3 + z1z2 + z1z3 = 0,

...

z0z2 + z1z2 + z1z3 + z2 + z2z3 + z3 = 0.

Note that all terms have degree ≤ 2, because we can replace any z2i with zi (since z2i = zi in Z2).
This forms a polynomial system, which in general is not easy to solve. However, the system can be
linearized by introducing new variables for each degree-2 term. For example:

X1 = z0z1,

X2 = z0z2,

...

Resulting in:

X1 +X8 = 0,

X3 +X5 +X6 = 0,

...

This system can be solved for (X0, . . . , X4) = (1, 0, . . . , 0). Thus:

X0 = z0 = 1,

X4 = z1 = 0,

X7 = z2 = 0,

X9 = z3 = 0.

So the initial state of the LFSR is (1, 0, 0, 0). In general, for an LFSR of degree m and if the filter
f is a polynomial of degree d, the system has:

d∑
i=1

(
m

i

)

distinct terms, which is O(md). Thus, this many keystream entries are needed.

Hash Functions

Recall that encryption alone is not enough to ensure message integrity. For example, with a stream
cipher, an adversary can perform a bit-flip attack and change bits of the plaintext at locations they
control, even if decryption is not possible.

3

Bob wants a way to ensure that what Alice sent was what he received, this is known as data
integrity. Hash functions produce a fingerprint of arbitrary data and can be used for this purpose.
If the fingerprint is securely stored, the integrity of the data can be checked by comparing its
fingerprint.

If the fingerprint does not match, the data were corrupted. If it matches, we want assurance that
it was not corrupted, even though collisions may exist.

If x is a binary string and h a hash function, h(x) is typically called a digest and is a short binary
string (e.g. 160 or 256 bits). Keyed hash functions can also take a secret key k and are useful for
generating Message Authentication Codes (MACs). If Alice and Bob share k, then a tag y = hk(x)
can be computed by Alice, who sends (x, y) to Bob. Bob verifies that y = hk(x) and is confident
in the integrity and source.

Formally, a hash family is a tuple (X ,Y,K,H) where:

• X is the set of possible messages,

• Y is the set of digests (finite),

• K is the keyspace.

For each k ∈ K, there is a function:

Hk : X → Y, hk ∈ H.

A pair (x, y) ∈ X × Y is valid if hk(x) = y. We want to prevent an adversary from generating a
valid pair without knowing k. The only way to generate a valid pair should be by choosing x and
computing hk(x).

For a hash function h to be considered secure, the following problems should be infeasible:

• Preimage: Given y ∈ Y, find x ∈ X such that h(x) = y.

• Second Preimage: Given x ∈ X , find a different x′ ∈ X such that h(x) = h(x′) (with
x ̸= x′).

• Collision: Find two distinct x, x′ ∈ X such that h(x) = h(x′). The pair (x, x′) is called a
collision.

4

