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1 Overview

In the last lecture we ended in the middle of proving for any cryptosystem that if |P| = |C| = |K|,
then the cryptosystem is perfectly secure if and only if every key is used with equal probability(

1
|K|

)
, and for each x ∈ P and y ∈ C, there is a unique key k such that ek(x) = y.

In this lecture we finish the proof, give an application with the one-time pad cryptosystem, and
begin a discussion of block ciphers.

2 More on perfect security

The other direction of the proof assumes that Pr[k] = 1
|K| , for all k ∈ K, and for each x ∈ P and

y ∈ C, there is a unique key k such that ek(x) = y. In this case, the argument is similar to the
proof that the shift cipher is perfectly secure. □

2.1 One-time Pad

The One-time Pad, where the length of the key is equal to the length of the plaintext, and
ek(x) = x ⊕ k (where ⊕ denotes the bitwise XOR operator), is perfectly secure as a result of the
previous theorem, assuming that each k is chosen uniformly at random. This is because there is
a unique key k for which ek(x) = y for all (x, y) ∈ P × C, as k can be easily shown to be x ⊕ y.
The One-time Pad was invented in 1917 by Gilbert Vernam. Its major drawback is that |K| ≥ |P|,
meaning that the keys are at least as large as the messages sent.

It is also easily broken with a known-plaintext attack. Given plaintext-ciphertext pair (x, y), k can
easily be computed to be x ⊕ y. The same key can also never be used twice, as doing so could
potentially reveal information about the key.

3 Block ciphers

Most modern block ciphers use a sequence of permutation and substitution operations. Commonly
they use iteration which uses a round function and key schedule to encrypt one block for one
round. The full encryption uses N rounds for some fixed N .

Let K be a random binary key of fixed length, used to construct N round keys k1, k2, . . . , kN that
form the key schedule. The ki are constructed using a known algorithm. The round function g takes
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z 0 1 2 3 4 5 6 7 8 9 A B C D E F
πs(z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Table 1: Definition for πs

z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πp(z) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Table 2: Definition for πp

two inputs: a round key kr, and a current state wr−1. The next state will be wr = g(wr−1, kr).
State w0 is the plaintext, and the final state wN is the ciphertext. The encryption goes as follows:

Round 0: w0 = x

Round 1: w1 = g(w0, k1)

...
...

Round N : wN = g(wN−1, kN ) = y

Note that g must be injective in N for decryption to be possible. In this case, g−1(g(w, z), z) = w.
This can only be done if the key is known.

3.1 Substitution-permutation networks (SPNs)

Substitution-permutation networks (SPNs) are a special kind of iterated cipher, whose round
function is based on substitutions and permutations.

Suppose ℓ,m ∈ N and P = C = Zℓm
2 , where ℓm is the block length. And SPN built from per-

mutations πs : {0, 1}ℓ → {0, 1}ℓ and πp : {1, . . . , ℓm} → {1, . . . , ℓm}. πs is called an s-box, and
effectively implements a substitution cipher on bitstrings in Zℓ

2. πp permutes Zℓm
2 via permuting

the indices of the bits.

We’ll apply πs to m chunks of length ℓ. So if x ∈ Zℓm
2 , we write x = x⟨1⟩||x⟨2⟩|| . . . ||x⟨m⟩. SPNs

have N rounds, each consisting of the following:

1. The state is XORed with the round key

2. πs is applied to all m chunks of the state

3. πp is applied to the indices of the bits of the state to reorder them

Conventionally, the final round skips applying πp to simplify decryption, and a final XOR is applied
(this is called whitening).

Example: Suppose ℓ = m = 4. We’ll use hexadecimal to represent the bitstrings for simplicity
(i.e., 0000 = 0, 0001 = 1, . . . , 0101 = 9, 0110 = A, . . . , 1111 = F ). Define πs as seen in Table 1, and
define πp as seen in Table 2. A circuit depiction of this SPN can be seen in Figure 1.
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Figure 1: SPN network diagram, from Cryptography, Theory and Practice, 4th edition, by Douglas
R. Stinson and Maura B. Paterson
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Figure 2: DES round circuit depiction, from Cryptography, Theory and Practice, 4th edition, by
Douglas R. Stinson and Maura B. Paterson

The encryption process goes as follows.

Suppose x = 0010 0110 1011 0111

k1 = 0011 1010 1001 0100

x⊕ k1 = 1 C 2 3

Apply πs : 4 5 D 1

Apply πp : 0010 1110 0000 0111

...

In practice, s-boxes are implemented via lookup table, so πs : Zℓ
2 → Zℓ

2 needs 2ℓ · ℓ bits (ℓ bits for
each input). As a result, hardware implementations would need to have very small s-boxes.

4 Data Encryption Standard (DES)

In 1973, what is now known as NIST (National Institute of Standards and Technology) solicited
a call for a cryptosystem, leading to adapting DES (Data Encryption Standard) as a standard in
1977 after being developed by IBM. It’s a type of iterated cipher called a Feistel cipher.

Say state ui = Li||Ri (dividing ii into its left and right halves). The round function g has the form
g(ui−1, ki−1) = ui = Li||Ri, where Li = Ri−1 and Ri = Li−1 ⊕ f(Ri−1, ki) for some function f . f
does not need to be invertible, as g will still be invertible via Li−1 = Ri ⊕ f(Li, ki) and Ri−1 = Li.
The circuit depiction can be seen in Figure 2.
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