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Overview

In the last lecture, we introduced the notion of perfect security using conditional probability.

In this lecture, we continue to discuss perfect security, and some properties of perfectly secure
cryptosystems.

Perfect security (continued)

Recall the following example from the previous lecture; consider the cryptosystem where P =
{a, b}, C = {1, 2, 3, 4}, K = {k1, k2, k3}, and encryption is done according to Table 1. Assume that
Pr[a] = 1

4 , Pr[b] =
3
4 , Pr[k1] =

1
2 , Pr[k2] =

1
4 , Pr[k3] =

1
4 .

What is the probability that a given message sent was a, given that the ciphertext is 3? Note that
{k : 3 = ek(a)} = {k3}, so

Pr[a | 3] =
Pr[a]

∑
ek(a)=3 Pr[K = k]

Pr[3]
=

1
4 · 1

4
1
4

=
1

4
= Pr[a]

Eve has no new information; it is just as likely as before that a was sent. A cryptosystem has
perfect security if this is true for all x ∈ P, y ∈ C.

We can show that the shift cipher has perfect security when the key is at least as long as the
plaintext. Even with exhaustive key search, an attacker could not deduce any information about
what was encrypted; i.e., if Alice were to send ‘c’ after applying the shift cipher, Eve could not
determine what letter was originally sent, even after exhaustively searching the keyspace.

Theorem 1. Suppose the 26 keys in the shift cipher are used with equal probability. Then for any
distribution of plaintexts, the shift cipher has perfect security.

Proof. Recall that C = P = K = Z26, and for 0 ≤ k < 26, ek(x) = x + k, and dk(y) = y − k. Let
y ∈ C. Then

Pr[y] =
∑

{k:y∈C(k)}

Pr[K = k]Pr[X = dk(y)]

=
1

26

∑
k∈Z26

Pr[X = y − k]

1



a c

k1 1 2

k2 2 3

k3 3 4

Table 1: Encryption matrix

since {k : y ∈ C(k)} = K = Z26.
y − k takes all possible values x ∈ Z26 as k ranges over all k ∈ Z26, so∑

k∈Z26

Pr[X = y − k] = 1

and thus Pr[y] = 1
26 . Next,

Pr[y | x] =
∑

{k:y=ek(x)}

Pr[K = k] =
1

26

Finally by Baye’s Theorem,

Pr[x | y] = Pr[x]Pr[y | x]
Pr[y]

=
Pr[x] · 1

26
1
26

= Pr[x]

Therefore, it is perfectly secure.

Exhaustive key search doesn’t help an attacker, as trying all keys k will generate all possible
plaintexts x.

If a system is perfectly secure and we suppose Pr[y] > 0 for all possible ciphertexts y, then we must
have |K| ≥ |C|. This is because Baye’s theorem says that if Pr[x | y] = Pr[x], then Pr[y | x] = Pr[y].
Since Pr[y] > 0, we have Pr[y | x] > 0. Then given any x ∈ P, there is a k ∈ K such that ek(x) = y.
Therefore, |K| ≥ |C|, as otherwise there would be some y with no k sending an x to y.

Also, since ek is injective in any cryptosystem, |C| ≥ |P|.

Theorem 2. Let (P, C,K, E ,D) be a cryptosystem. If |P| = |C| = |K|, then the cryptosystem is
perfectly secure if and only if every key has probability 1

|K| , and for all (x, y) ∈ P × C, there is a

unique key k such that ek(x) = y.

Proof. Suppose the cryptosystem is perfectly secure. Then ∀(x, y) ∈ P × C, ∃k ∈ K such that
ek(x) = y. So |C| = |{ek(x) : k ∈ K}| for all x ∈ P.
But |C| = |K|, so |K| = {ek(x) : k ∈ K}, and thus cannot have two distinct keys k1, k2 such that
ek1(x) = ek2(x). So there is exactly one k for which ek(x) = y.

We now must show Pr[k] = 1
n , where n = |K|. Let P = {xi : 1 ≤ i ≤ n}. We can write

K = {k1, . . . , kn}, such that eki(xi) = y, for some fixed y. From Baye’s theorem,

Pr[xi | y] =
Pr[y | xi]Pr[xi]

Pr[y]
=

Pr[K = ki]Pr[xi]

Pr[y]
=

Pr[K = ki]Pr[xi | y]
Pr[y]
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Note that the last equation holds due to the perfect security condition. Cancelling Pr[xi | y], we
find that Pr[K = ki] = Pr[y]. This has to be fixed as 1

n , since
∑n

i=1 Pr[ki] = 1.

Proof continued in next lecture.
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