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Prof. Curtis Bright Scribe: Aidan Bennett

Overview

In the last lecture we looked at cryptanalysis for several of the cryptosystems we had already
discussed.

In this lecture we will finish our discussion of cryptanalysis of these cryptosystems, and introduce
some probability concepts, as well as the notion of perfect security. This corresponds to sections
2.2.4 through 3.3 in the textbook.

Cryptanalysis of Hill Cipher (continued)

Example: Suppose the plaintext friday is encrypted using a Hill Cipher with m = 2, yielding
PQCFKU. Then we have that

er(5,17) = (15,16)
ek’(& 3) = (27 5)
ex(0,24) = (10, 20)
Taking the first two pairs we get the matrix equation
15 16 5 17
BN
We can solve for K by computing the inverse of the matrix on the right as follows.
5 17 ‘1_9_1 3 —17] _,[3 -17|_[9 1
8 3 N -8 5| “|[-8 5] |2 15
Multiplying by this on both sides of the equation, we find
K:911516:1719
2 15( (12 5 8 3

which can be easily verified using the remaining known plaintext and ciphertext.

Cryptanalysis of LFSR stream cipher

Recall that for an LFSR stream cipher, the keystream is generated from initial values (z1, ..., zp) =
(k1,...,kn), together with a linear recurrence
m—1
Zitm = Z ¢jzi+; mod 2 (1)
§=0



for ¢ > 1, and fixed coefficients cg, ..., cm_1 € Zo.

We will use a known plaintext attack, assuming m is known. Suppose (z,y) is a known plain-
text /ciphertext pair. We will denote n := len(z), and assume n > 2m. Recall that y is generated
from x by a bitwise XOR with the keystream, so y; = x; ® z;, and thus z; = y;  x;.

So XORing = and y give the initial values (21, ..., zmm ), but we still need to find o, ..., ¢yn—1. Since
Equation (1) has m unknowns, as long as we have that n > 2m, we can create a system of linear
equations that we can solve:

21 zZ9 ce Zm
L T
(Zm+17 s 722m) = (CO7 s >Cm—1)
Zm  Am41l ... R2m—1
(denoted Z)
We can then compute (co, ..., ¢m-1) = (Zmt1,---,2m)Z 1. Note that Z will always be invertible

if the recurrence used to generate the keystream has degree m.

Example: Suppose we have the known plaintext/ciphertext pair for an LFSR stream cipher
where x = 0011, and y = 1110, and m is known to be 2. We can compute z =z ®y = (1,1,0,1).

Then
(23,24) = (co,c1) (Zl ZZ)

%2 z3

@ ey =00 (L ) =

So zi42 = zi+1 + 2, like the Fibonacci recurrence.

Notions of security

Recall the notions of security:

1. Computational security: Security of cryptosystem relies on being safe against the current
best known attacks; safe as long as no new attack methods are discovered

2. Provable security: It can be proved that the problem of breaking a cryptosystem reduces
to a problem that is known to be difficult, like factoring. Safe as long as related more difficult
problem remains unsolved.

3. Unconditional security: Impossible to break, even with infinite time and resources. We
will be able to use probability to show when a cryptosystem is unconditionally secure.

Probability Theory

Definition 1. A discrete random variable X consists of a finite set X, and a probability
distribution defined on X. The probability that a random wvariable X takes on the value x is
denoted Pr[X = x| (or just Pr[x| if the random variable is clear).



Some more important information:

e The axioms of probability state that 0 < Pr[z] for all z, and

Z Priz] =1

rzeX

e The joint probability distribution of two random variables X,Y, denoted Pr[X = z,Y
is the probability that X takes the value x while also Y takes the value y.

yl,

e A conditional probability, Pr[z|y], is the probability that X takes on the value z given

that Y takes on the value y.

e Two random variables X and Y are called independent if Pr[z, y] = Pr[z]Pr[y], for all z,y.

Some important formulas relating conditional probabilities to joint probabilities include:

o Pr[z,y] = Pr(z[y|Pr(y]
e By symmetry, we also get Pr[x,y] = Prly|z]Pr[z]
e Combining the above two, we get Bayes’ Theorem:

Pr[y|z|Pr[z]

Priely] = =5

Perfect Security

Let (P,C,K,E,D) be a cryptosystem. We will assume the key k € K is always only used once.
Suppose there is a probability distribution on the plaintext space P, such that the plaintext defines

a random variable X, and Pr[x] is the probability that message x is sent.

Similarly, Pr[K = k] is the probability of k being the chosen key. We will assume that K, X are
independent. These random variables induce a probability distribution on C, where Pr[y| is the

probability of the message y € C being sent.

For a key k € K, define C(k) := {er(x) : © € P} to be the set of all possible ciphertexts y that k

could encrypt to. Then

Priy = Y Pr[K=kPr[X = di(y)]
{k:yeC(k)}
It also follows that
Prlylz] = Z PriK = k]
{k:y=ex(2)}

Combining the above two formulas with Baye’s Theorem yields

PI‘[{I}] Z{k:y:ek(x)} PI‘[K = k]
> (kyec ()} PrIK = EJPr[X = di(y)]

Prizly] =

3



a | c
ki |12
ky |23
ks | 3|4

Table 1: Encryption matrix

Example: Consider the cryptosystem where P = {a,b}, C = {1,2,3,4}, K = {k1, k2, ks}, and
encryption is done according to Table 1. Assume that Pr[a] = %, Pr[b] = %, Prlki] — %’ Prlky] — %,
Prlks] = §.

Then
Pr[1] = Pr[k1|Pr[X = di, (1)] = % ' % _ %
13 11 7
Pr[2] = Pr[k1|Pr[X = dy, (2)] + Prlk2]Pr[X = d,(2)] = 55 n L

A cryptosystem being perfectly secure means that when the ciphertext is observed, no informa-
tion is revealed about the plaintext. Formally, for all (z,y) € P x C, Pr[z|y] = Pr[x].



