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1 Overview

This lecture continues with classical ciphers from Chapter 2.1. Previously covered were Shift,
Substitution, and Affine ciphers.

2 Vigenere Cipher

The previous ciphers mapped each character to another character (fixed throughout the plaintext).
e These are called monoalphabetic ciphers.
The Vigenere cipher extends this idea using a key of length m:

e Encrypt m characters at a time.
e Add each plaintext character to the corresponding character in the key, for 1 < ¢ < m.
e This process is based on modular arithmetic.

Example: Let k= ‘CAT’ and P = ‘HELLO’.

Align the key repeatedly above the plaintext and add character-wise:

c AT C A
+H E L L O
J E N N O

Expressing numerically (where A =0,B=1,...,7Z = 25):
(2,0,19,2,0) + (7,4,11,11,14) = (9,4, 4,13, 14).

Formally, define:
P=C=K="1Z.

For k = (k1,...,kn), encryption and decryption are:
ex(z) = (1 + k1,...,2m + ki) mod 26,
di(y) = (y1 — k1, -+, Ym — km) mod 26.
The keyspace is of size || = 26™.

e Thus, even a moderate key length makes brute-force infeasible.



3 Hill Cipher

The Hill cipher encrypts messages using a linear transformation:

e Let A be an m x m invertible matrix over Zog.
e The plaintext is represented as an m-dimensional row vector.

Encryption: The transformation is:

z+— A mod 26.

Decryption: Requires the matrix inverse:
y—yA~!l mod 26.
The keyspace consists of all invertible m x m matrices:
K={AecZj™ |det(A) #0 mod 26}.
For A1 to exist, ged(det 4,26) = 1 must hold.

Finding A~': The inverse of A is computed as:
A7l = (det(A))71 - Adj(A).
The adjugate (a of a matrix A is the transpose of its cofactor matrix:
Adj(A) = (Cof(A)T.
The cofactor C;; of an element a;; in A is given by:
Cij = (1) My,

where M;; is the minor of a;j, and is the determinant of the submatrix obtained by removing the
ith row and jth column of A.

. a1 a
Example: For a matrix A = 1 e
a21 22

The minors are:
My = a2, Mo =a91, Mo =ai2, My =an

The cofactor matrix is:
Cof(A) = <C11 012) _ ((—1)1+1M11 (—1)1+2M12> _ < a2 —a21)
Co1 Co (1) 1My (—1)22 Moy —ai2  an
The adjugate matrix is:
T
Adi(A) = (Cof(ANT = ( 922 —a21> :(a22 —a12>
1(4) = (Cof(4)) <—a12 an —az1  an

The inverse is:

A*l 1 . AdJ(A) — 1 < a22 —CL12>

det(A) ajla — ai2a21 \—021  a11



. . a b 11 8
Example: Consider the matrix A = (c d) = (3 7)

Compute the determinant:
det(A) =ad —bc=11-7—-8-3="T7—24 = 53.

Since ged(53,26) = 1, A is invertible modulo 26.

: d b 7 =8
Adj(4) = (—c a ) a (—3 11>
And working in Zsg, we have:

1 (7 -8 717
_1—7. e .
4= 5 <—3 11) : <23 11> mod 26.

Thus, in Zsg, the inverse of A is:
7T 17
-1 _
A= (23 11> '

The adjugate of A is then:

4 Permutation Cipher

Unlike previous ciphers, the permutation cipher does not substitute characters but only changes
their positions.

Define:
K =Perm({1,...,m}).

Encryption: Reorders the characters according to permutation 7:

Decryption: Uses the inverse permutation:

dﬂ'(y) = (wal(l)v s 7y7r*1(m))‘

: . 1 2 3 45 6
Example: Consider the permutation 7 = <3 51 6 4 2>
This can also be written as:
z |1 23456
m)[3 5 1 6 4 2

or in cycle notation as (1 3) (254 6).
Let P = ‘HELLOTHERE".

e The degree of the permutation is 6, and there are 10 plaintext characters.



e We want to split the plaintext evenly into blocks of size 6.
Thus, we pad the plaintext with two padding characters, #, giving:
P = ‘HELLOTHERE##’

Applying the permutation to the indices, we obtain:

T 1 2 3 4 5 6 1 2 3 4 5 6
Plaintext |H EF L L O T H E R E # #
Ty 3 5 1 6 4 2 3 5 1 6 4 2
Ciphertext |L O H T L E |R # H # E E
Thus, the ciphertext is:
C = ‘LOHTLER#H#EE’
4.1 Permutation Matrix
The Permutation Cipher is a special case of the Hill Cipher.
We can model the permutation 7 = {1,...,m} as an m x m permutation matrix K, = (k; ;), such
that:
1 if i = n(j)
kij = :
0 otherwise
For example, if 7 = (1 3)(2 5 4 6), then:
[0 01 0 0 O]
00 0O0O01
1 0 00 0O
Kr=Kui32s546 = 000010
01 0 O0O0O0
0 0 01 0 0]

For example, for i = 5, since 7(5) = 4, we place a 1 at position (7(i),7) = (7(5),5) = (4,5).

5 Stream Ciphers

The cryptosystems we have seen so far are block ciphers:

e Successive elements of plaintext are encrypted using the same key, K.
e The ciphertext string y is computed blockwise:

Yy =wy2- - = ep(xrr)er(xa). ..
Stream ciphers use a “keystream” instead:

e Generate a keystream z = z129---
e Use it to encrypt a plaintext string x=z123---
e To produce a ciphertext string y = y1y2--- = €5 (z1)es,(x2) - -



5.1 Synchronous Keystream

A synchronous keystream only depends on the key k, and not the plaintext x.
Formally, a synchronous stream cipher includes in its description:

e L, the keystream alphabet.
e The keystream generating function, ¢g: K — LN,
e g takes a key K € K as input and generates an infinite string z12zs - - -, where z; € £,Vi > 1.

5.2 The Vigenere Cipher

The Vigenere Cipher can be described as a synchronus stream cipher by defining:
K=2Zs%, P=C=L=1Zy
e;(x) = (x + z) mod 26, d.(y) = (y — z) mod 26
Z'_{ki if1<i<m
L Zi—m Otherwise
where K = (k1,...,km).

This generates the keystream:
kiks - kpmkiks - - kmkiks - - -

from the key K = (k1, ko, ..., km).

Ideally, we want a short key to generate a long keystream, and it should be unpredictable and
seemingly random.

The Vigenére Cipher (which has keyword length m) is a periodic stream cipher with period m.

e This means the keystream repeats after only the first m elements.
e Since the period is only linear in m, it is a poor stream cipher.

5.3 Binary Stream Ciphers

Stream ciphers are often bitwise, such that P = C = £ = Z,. Encryption and decryption are simply
addition modulo 2:
e.(r) = (x+2)mod 2, d.(y)=(y+z)mod?2

Addition modulo 2 (bitwise addition) corresponds to the XOR operation (@), which allows encryp-
tion and decryption to be implemented efficiently in hardware.

A common way of generating a synchronous keystream is by using a linear recurrence:

m—1
Zitm = g ¢jziy; mod 2, Vi >0
=0
where ¢, ..., cn_1 € Zy are given constants.



e This recurrence has degree m since each term depends on m previous terms.
e [t is linear because z; ., is a linear function of previous terms.
e The key K is defined by the 2m values: ki,...,k, and ¢g, ..., Cn_1.

To maximize the keystream period, we choose ¢; carefully so that the period is as large as 2™ — 1.

e It is not 2™ because the keystream (k1. ..., ky,) = (0,0,...,0) does not encrypt the plaintext
and is never used.

Example: Let m =4, and let the keystream be generated using the linear recurrence:
Ziva = (2 + zi41) mod 2, Vi >1
and let the starting values be:
(21, 22, 23, 24) = (k1, ko, k3, k4) = (1,0,0,0).
Then, for i = 1 we have:
z5 = (21 +22) mod2=1+0mod2=1,

and for ¢ = 2:
26 = (22 +23) mod 2 =0+ 0 mod 2 =0,

and so on.

Computing the rest of the values gives the keystream:
1,0,0,0,1,0,0,1,1,0,1,0,1,1,1,1,0,0,0,...

where the first 24 — 1 = 15 elements make up the period, after which the keystream repeats.

5.4 Linear Feedback Shift Register (LFSR)
Keystream generation via bitwise arithmetic can be implemented very efficiently by encoding it as
a hardware circuit (LFSR).

The LFSR is a shift register that contains m consecutive keystream elements (stages), and is
initialized by the vector (ki,..., kp).

The register uses XOR addition with left-shifts (see Fig 2.2 in text).

Finally, there are non-synchronous ciphers in which the keystream depends on both the key, as well
as previous plaintext or ciphertext elements. The autokey cipher is an example.



