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1 Overview

This lecture covers material from Chapters 1.4 and 2.1.

2 Three Levels of Security

1. Computational Security: The best-known algorithms and most powerful computers re-
quire an impractical amount of time to break the cryptosystem.

2. Provable Security: Breaking the system can be reduced to solving a well-known, difficult
mathematical problem (e.g., factoring large numbers).

• Reduction: “A reduces to B” (A ≤ B or A ∝ B) means that given an instance of
problem A, we can transform it into an instance of problem B such that solving B
provides a solution to A.

• Example: RSA decryption reduces to factoring, meaning that breaking RSA is at most
as difficult as factoring large numbers.

• However, it is uncertain whether plaintext recovery is possible without factoring (e.g.,
exploiting the exponent).

3. Unconditional Security: The system remains secure even against an adversary with un-
limited computational power.

• Example: The one-time pad, where the key is a random string at least as long as the
plaintext.

• Encryption and decryption are performed using bitwise XOR with the key: C = M⊕K,
M = C ⊕K.

• Assumption: The key is never reused.

Practical Considerations: Modern cryptosystems have various weaknesses:

• Side-channel attacks: Exploiting unintended information leakage.
– Example: Timing attacks, where measuring encryption time can reveal cryptographic

keys.
• Best practices: Use well-tested cryptographic libraries.

– Ensure cryptographic operations run in constant time to prevent timing leaks.

3 Cryptosystems

A cryptosystem is defined as a tuple:
(P, C,K, E ,D)
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where:

• P: Finite set of plaintexts.
• C: Finite set of ciphertexts.
• K: Finite keyspace.
• For each k ∈ K:

– ek : P → C is the encryption function, where ek ∈ E .
– dk : C → P is the decryption function, where dk ∈ D.
– Satisfies: dk(ek(x)) = x for all x ∈ P.

Encryption Process: Suppose Alice wants to send a message x = x1x2 . . . xn to Bob:

• Alice applies the encryption function ek to each xi, giving yi = ek(xi).
• The ciphertext is y = y1y2 . . . yn.
• Bob decrypts each yi using dk(yi).
• Encryption function ek must be injective: ek(x) = ek(y) ⇒ x = y.
• If C = P, then ek and dk are bijections, meaning they permute the elements of P and C.

4 Mathematical Background

Modular Arithmetic: For a ∈ Z and m ∈ Z+, define:

a mod m = smallest nonnegative remainder of a divided by m.

Thus, a mod m ∈ {0, 1, . . . ,m− 1} = Zm.

Properties of Zm:
Zm forms a ring, meaning it supports addition and multiplication with:

• Closure: ∀a, b ∈ Zm, a+ b ∈ Zm, a · b ∈ Zm.

• Commutativity: ∀a, b ∈ Zm, a+ b = b+ a, a · b = b · a.

• Associativity: ∀a, b, c ∈ Zm, (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c).

• Identity: ∀a ∈ Zm, 0 + a = a+ 0 = a, 1 · a = a · 1 = a.

• Distributivity: ∀a, b, c ∈ Zm, a(b+ c) = a · b+ a · c.

• Additive inverses: ∀a ∈ Zm, ∃(m− a) such that a+ (m− a) = 0.

Multiplicative Inverses: An element a ∈ Zm only has a multiplicative inverse, a−1, when
gcd(a,m) = 1. That is, when a is coprime to m.

• For example, 2 does not have an inverse in Z4 because gcd(2, 4) = 2 ̸= 1.
• But 3 has an inverse in Z10 because gcd(3, 10) = 1, and we find that 3−1 = 7 since 3× 7 ≡ 1
(mod 10).

Fields: If m is prime, then every nonzero element of Zm has a multiplicative inverse, and Zm

forms a field, meaning that it supports division.
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5 Classical Ciphers

5.1 Caesar (Shift) Cipher

For simplicity, we use the mapping:

A = 0, B = 1, . . . , Z = 25 (Z26).

Define the plaintext space, ciphertext space, and keyspace as:

P = C = K = Z26.

For a given key k ∈ K, define the encryption and decryption functions as:

ek(x) = x+ k (mod 26), dk(y) = y − k (mod 26).

Since ek and dk are inverses, encrypting a message and then decrypting it restores the original
plaintext.

Example: Suppose we encrypt “CAT” using k = 11:

ek(C) = N, ek(A) = L, ek(T ) = E.

Thus, the ciphertext is “NLE”.

Security Considerations: Eve, does not know k, so she cannot directly invert ek . However,
she can brute-force all possible keys, since |K| = 26.

This makes the Caesar cipher insecure against modern cryptanalysis.

5.2 Substitution Cipher

The Substitution Cipher is a more complex scheme, where each letter is replaced by another letter.

Definition: The plaintext and ciphertext spaces remain:

P = C = Z26.

However, the keyspace consists of all permutations of Z26:

K = Perm(Z26).

For a permutation (key) π ∈ K the encryption and decryption functions are:

eπ(x) = π(x), dπ(y) = π−1(y).
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Security Considerations: Since the keyspace has size:

|K| = 26! ≈ 4× 1026,

it is infeasible to brute force all possible keys. However, frequency analysis can still break this
cipher.

5.3 Affine Cipher

The Affine Cipher is a generalization of the Caesar cipher that applies a linear transformation.

Encryption Function: Define encryption as:

ek(x) = ax+ b (mod 26), where a, b ∈ Z26.

Decryption Function: To decrypt, solve for x in:

y ≡ ax+ b (mod 26).

Using modular inverses:
x ≡ a−1(y − b) (mod 26).

Since a−1 must exist, a must be coprime with 26, which means that gcd(a, 26) = 1.

Thus, we define the keyspace:

K = {(a, b) ∈ Z2
26 | gcd(a, 26) = 1} = Z∗

26 × Z26.

Here, Z∗
26 is the set of multiplicative invertible elements of Z26.

Example: Encrypting H = 7 with k = (7, 3):

ek(7) ≡ 7 · 7 + 3 ≡ 52 ≡ 0 (mod 26) = A.

To decrypt:
dk(0) ≡ 7−1(0− 3) ≡ 15 · 23 ≡ 345 ≡ 7 (mod 26) = H.

Efficiency: The Euclidean algorithm can efficiently compute modular inverses for decryption.
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