Exercise Worksheet 2

November 6, 2022

1 Exercise 1

A Euclidean domain is a ring in which the Euclidean algorithm can be applied (for example, the integers). Let R be a Euclidean domain, K its field of fractions, and $f_{1}, \ldots, f_{l} \in K$.
A continued fraction, denoted $C\left(f_{1}, \ldots, f_{l}\right)$, is defined to be

$$
f_{1}+\frac{1}{f_{2}+\frac{1}{\ddots \cdot \frac{f_{l-1}+\frac{1}{f_{l}}}{}}} .
$$

Let $\left\{q_{i}: 1 \leq i \leq l\right\}$ be the quotients in the Euclidean algorithm run on $r_{0}, r_{1} \in R$.

1.1 Part (a)

Prove by induction that $r_{0} / r_{1}=C\left(q_{1}, \ldots, q_{l}\right)$.

1.2 Part (b)

Representing a continued fraction as a list $\left[q_{1}, \ldots, q_{l}\right]$, write a Sage or Maple procedure contfrac to compute the continued fraction expansion of two polynomials in $\mathbb{Q}[x]$.

1.3 Part (c)

Run your algorithm on $r_{0}:=x^{20}$ and $r_{1}:=x^{19}+2 x^{18}+x \in \mathbb{Q}[x]$.

2 Exercise 2

This exercise considers a variant of the Euclidean algorithm that can be faster in practice. Consider the following recursive pseudocode for computing $\operatorname{gcd}(a, b)$ of two positive integers a and b.

- if $a=b$ then return a
- if both a and b are even then return $2 \operatorname{gcd}(a / 2, b / 2)$
- if a is even then return $\operatorname{gcd}(a / 2, b)$
- if b is even then return $\operatorname{gcd}(a, b / 2)$
- if $a>b$ then return $\operatorname{gcd}((a-b) / 2, b)$
- otherwise return $\operatorname{gcd}((b-a) / 2, a)$

2.1 Part (a)

Implement this algorithm in Sage or Maple and demonstrate it on the pairs $(34,21),(136,51)$, $(481,325)$, and $(8771,3206)$.

2.2 Part (b)

Use induction to prove the algorithm works correctly. (Hint: use strong induction which derives a proposition about a number by assuming the proposition is true for all smaller numbers.)

2.3 Part (c)

Find a good upper bound on the recursion depth and use this to prove that the running time of the algorithm is $O\left(n^{2}\right)$ word operations when a and b have length at most n.

2.4 Part (d)

Modify the algorithm into an "extended" version which computes integers s, t such that $s a+t b=$ $\operatorname{gcd}(a, b)$. Give your answer in the form of a Sage or Maple function and test it on the pairs from part (a).

3 Exercise 3

If p is a prime then the $\operatorname{ring} \mathbb{Z}_{p}$ of integers $\bmod p$ is a field: every nonzero element has an inverse.
In particular, for any nonzero $b \in \mathbb{Z}$ and any $a \in \mathbb{Z}$ we can always find a $q \in \mathbb{Z}$ such that $a \equiv q b$ $(\bmod p)$.
When m is not prime the congruence $a \equiv q b(\bmod m)$ may or may not have a solution. For example, $6 \equiv 3 \cdot 6(\bmod 12)$ (so with $a=b=6$ and $m=12$ there is a solution) but there is no integer q such that $5 \equiv q \cdot 6(\bmod 12)($ so with $a=5, b=6, m=12$ there is no solution).

3.1 Part (a)

Write a Sage or Maple function mod_inv that takes as input integers a and b and returns some element $q \in \mathbb{Z}$ such that $a \equiv q b(\bmod m)$ or returns False if no such q exists. You can use the the xgcd function of Sage or the igcdex function of Maple. Your implementation should run in polynomial time in the input size.

3.2 Part (b)

Test your function well and demonstrate it working on several different inputs.

4 Exercise 4

Let $q=11$ and $n=10$. This question will involve Reed-Solomon codes over \mathbb{F}_{q}.

4.1 Part (a)

Show that $\alpha=2 \in \mathbb{F}_{q}$ is a primitive nth root of unity and that the polynomial $x^{n}-1$ splits into linear factors over \mathbb{F}_{q}.

4.2 Part (b)

Suppose that we want to correct up to $t=2$ errors. Show that $g(y)=y^{4}+3 y^{3}+5 y^{2}+8 y+1$ works as a generator polynomial.

4.3 Part (c)

Suppose that you receive the encoded message $y^{6}+7 y+4$. What is the corrected codeword and what was the original message?

