
Exercise Worksheet 2

November 6, 2022

1 Exercise 1

A Euclidean domain is a ring in which the Euclidean algorithm can be applied (for example, the
integers). Let R be a Euclidean domain, K its field of fractions, and f1, . . . , fl ∈ K.

A continued fraction, denoted C(f1, . . . , fl), is defined to be

f1 +
1

f2 +
1

. . .
fl−1 +

1
fl

.

Let { qi : 1 ≤ i ≤ l } be the quotients in the Euclidean algorithm run on r0, r1 ∈ R.

1.1 Part (a)

Prove by induction that r0/r1 = C(q1, . . . , ql).

1.2 Part (b)

Representing a continued fraction as a list [q1, . . . , ql], write a Sage or Maple procedure contfrac
to compute the continued fraction expansion of two polynomials in Q[x].

1.3 Part (c)

Run your algorithm on r0 := x20 and r1 := x19 + 2x18 + x ∈ Q[x].

2 Exercise 2

This exercise considers a variant of the Euclidean algorithm that can be faster in practice. Consider
the following recursive pseudocode for computing gcd(a, b) of two positive integers a and b.

• if a = b then return a
• if both a and b are even then return 2 gcd(a/2, b/2)
• if a is even then return gcd(a/2, b)
• if b is even then return gcd(a, b/2)
• if a > b then return gcd((a − b)/2, b)
• otherwise return gcd((b − a)/2, a)

1

2.1 Part (a)

Implement this algorithm in Sage or Maple and demonstrate it on the pairs (34, 21), (136, 51),
(481, 325), and (8771, 3206).

2.2 Part (b)

Use induction to prove the algorithm works correctly. (Hint: use strong induction which derives a
proposition about a number by assuming the proposition is true for all smaller numbers.)

2.3 Part (c)

Find a good upper bound on the recursion depth and use this to prove that the running time of
the algorithm is O(n2) word operations when a and b have length at most n.

2.4 Part (d)

Modify the algorithm into an “extended” version which computes integers s, t such that sa + tb =
gcd(a, b). Give your answer in the form of a Sage or Maple function and test it on the pairs from
part (a).

3 Exercise 3

If p is a prime then the ring Zp of integers mod p is a field: every nonzero element has an inverse.

In particular, for any nonzero b ∈ Z and any a ∈ Z we can always find a q ∈ Z such that a ≡ qb
(mod p).

When m is not prime the congruence a ≡ qb (mod m) may or may not have a solution. For
example, 6 ≡ 3 · 6 (mod 12) (so with a = b = 6 and m = 12 there is a solution) but there is no
integer q such that 5 ≡ q · 6 (mod 12) (so with a = 5, b = 6, m = 12 there is no solution).

3.1 Part (a)

Write a Sage or Maple function mod_inv that takes as input integers a and b and returns some
element q ∈ Z such that a ≡ qb (mod m) or returns False if no such q exists. You can use the
the xgcd function of Sage or the igcdex function of Maple. Your implementation should run in
polynomial time in the input size.

3.2 Part (b)

Test your function well and demonstrate it working on several different inputs.

4 Exercise 4

Let q = 11 and n = 10. This question will involve Reed–Solomon codes over Fq.

2

4.1 Part (a)

Show that α = 2 ∈ Fq is a primitive nth root of unity and that the polynomial xn − 1 splits into
linear factors over Fq.

4.2 Part (b)

Suppose that we want to correct up to t = 2 errors. Show that g(y) = y4 + 3y3 + 5y2 + 8y + 1
works as a generator polynomial.

4.3 Part (c)

Suppose that you receive the encoded message y6 + 7y + 4. What is the corrected codeword and
what was the original message?

3

	Exercise 1
	Part (a)
	Part (b)
	Part (c)

	Exercise 2
	Part (a)
	Part (b)
	Part (c)
	Part (d)

	Exercise 3
	Part (a)
	Part (b)

	Exercise 4
	Part (a)
	Part (b)
	Part (c)

