Computational Mathematics: Handout 11

Curtis Bright

December 7, 2022

1 A Modular Euclidean Algorithm

In this handout we cover a modular version of the Euclidean algorithm. This provides a way to control the coefficient growth of the Euclidean algorithm of polynomials over coefficient fields like Q. Note that applying the usual Euclidean algorithm on polynomials with coefficients in Q typically causes a great increase in the size of the numerators and denominators of the intermediate coefficients used in the algorithm (and in the coefficients of the $s, t \in \mathbb{Q}[x]$ provided by the extended Euclidean algorithm, which typically explode in size even when run on coprime $a, b \in \mathbb{Q}[x]$ with small integer coefficients).
[1]:

```
# An example demonstrating the coefficient growth that occurs in the Euclidean\sqcup
    ->algorithm in Q[x]
F.}\langle\textrm{X}\rangle=\mp@code{QQ[]
a = F(random_vector(ZZ, 10, 10).list())
b = F(random_vector(ZZ, 10, 10).list())
g, s, t = xgcd(a,b)
print(a)
print(b)
print(s)
```

$3 * x^{\wedge} 9+7 * x^{\wedge} 8+4 * x^{\wedge} 7+8 * x^{\wedge} 6+2 * x^{\wedge} 5+3 * x^{\wedge} 4+4 * x^{\wedge} 3+6 * x^{\wedge} 2+9 * x$
$5 * x^{\wedge} 9+7 * x^{\wedge} 8+6 * x^{\wedge} 7+3 * x^{\wedge} 6+4 * x^{\wedge} 5+7 * x^{\wedge} 4+x^{\wedge} 3+4 * x^{\wedge} 2$
$6443632968160 / 118131505340139 * x^{\wedge} 7$ - $34866263779 / 6217447649481 * x^{\wedge} 6-$
$958350531281 / 39377168446713 * x^{\wedge} 5-214215554689 / 39377168446713 * x^{\wedge} 4+$
$5207481762998 / 118131505340139 * x \wedge 3+794474335838 / 118131505340139 * x^{\wedge} 2-$
$5285189195002 / 118131505340139 * x+1 / 9$

Additionally, the modular approach also works in $\mathbb{Z}[x]$ (not just $\mathbb{Q}[x]$).

1.1 GCDs in $\mathbb{Z}[x]$

We've seen that the Euclidean algorithm does not work in $\mathbb{Z}[x]$ since \mathbb{Z} is not a field. A priori it is not even clear if the concept of GCD makes sense in $\mathbb{Z}[x]$ as not every ring has unique factorization. An example of a ring that does not have unique factorization (and therefore does not have GCDs) is the polynomial ring $\mathbb{Z}[x]$ with arithmetic performed modulo $x^{2}-3$ (typically denoted $\left.\mathbb{Z}[x] /\left\langle x^{2}-3\right\rangle=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}\right)$.

Disregarding this, a theorem of Gauss implies that GCDs do in fact exist in $\mathbb{Z}[x]$ and we will develop an algorithm to compute them.

1.1.1 Irreducible polynomials

A polynomial f in $\mathbb{Z}[x]$ is called irreducible if it cannot be factored any further in $\mathbb{Z}[x]$, i.e., the decomposition $f=g h$ must be trivial (one of $g, h \in \mathbb{Z}[x]$ is invertible and thus ± 1).
For example, $x^{2}-1$ is not irreducible, since it factors as $(x-1)(x+1)$.
Note that the irreducibility of a polynomial can depend on its coefficient ring. For example, $x^{2}-2$ is irreducible over \mathbb{Z} but not over \mathbb{R}. Conversely, $2 x+2$ is not irreducible over \mathbb{Z} as it factors as $2 \cdot(x+1)$ which is nontrivial in \mathbb{Z} (neither factor is invertible). However, $2 x+2$ is irreducible over \mathbb{R}, since the factorization $2(x+1)$ is trivial over \mathbb{R} as 2 is invertible in \mathbb{R}.

1.1.2 Gauss' lemma

A polynomial is called primitive if the greatest common divisor of its coefficients is 1 .
For example, $6 x^{2}+2 x+3$ is primitive as $\operatorname{gcd}(6,2,3)=1$ but $6 x+3$ is not primitive as $\operatorname{gcd}(6,3)=$ 3.

A property of integer polynomials proven by Gauss is that the product of two primitive polynomials is also a primitive polynomial.

Furthermore, a nonconstant polynomial f is irreducible (over \mathbb{Z}) if and only if f is primitive and f is irreducible (over \mathbb{Q}).

In other words, for nonconstant primitive polynomials irreducibility over \mathbb{Z} and irreducibility over Q correspond exactly.

These properties are known as Gauss' lemmas and using them it follows that $\mathbb{Z}[x]$ has unique factorization because $\mathbb{Q}[x]$ has unique factorization. More generally, if R has unique factorization then $R[x]$ also has unique factorization.

1.1.3 Simplifying assumption

Say $f, g \in \mathbb{Z}[x]$ and we want to compute $\operatorname{gcd}(f, g)$ over \mathbb{Z}. It is not a restrictive assumption to assume that f and g are primitive, because if they were not it is easy to compute their "primitive parts" by dividing through by the greatest common divisor of their coefficients first.

Let $\operatorname{pp}(f)$ be defined to be $f / \operatorname{gcd}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$. In order to compute the GCD of f and g it sufficies to compute the GCD of the "non-primitive" parts (i.e., $\operatorname{gcd}\left(f_{0}, f_{1}, \ldots, f_{n}, g_{0}, g_{1}, \ldots, g_{m}\right)$) and the GCD of the primitive parts $\mathrm{pp}(f)$ and $\mathrm{pp}(g)$. Thus, from now on we will assume that f and g are primitive. By Gauss' lemma this also implies their product is primitive and $\operatorname{pp}(f g)=\mathrm{pp}(f)$. $\mathrm{pp}(g)$.

1.1.4 Computing GCDs in $\mathbb{Z}[x]$ via GCDs in $\mathbb{Q}[x]$

As stated above, we assume that $f, g \in \mathbb{Z}[x]$ are primitive and we want to compute their GCD over \mathbb{Z}. We already know how to compute their GCD over \mathbb{Q} using the Euclidean algorithm.

Let $v:=\operatorname{gcd}_{\mathrm{Q}[x]}(f, g)$ be the result of applying Euclid's algorithm. As we previously saw, by construction v will be monic, i.e., have a leading coefficient of 1 . However, its other coefficients will very likely be over \mathbb{Q} and not over \mathbb{Z}; thus it is not acceptable as a GCD over \mathbb{Z}.

Corollary 6.10 in Modern Computer Algebra states that if h is the GCD of f and g over \mathbb{Z} then h is primitive and

$$
h / \operatorname{lc}(h)=v \quad \text { where } \operatorname{lc}(h) \text { is the leading coefficient of } h .
$$

Thus, we need to multiply v by lc (h) in order to compute h. Of course, we don't know lc (h) since we don't know h. However, we can find a multiple of lc (h). Because h divides f and g (by definition it is the largest divisor) it also follows that $\operatorname{lc}(h)$ divides $\operatorname{lc}(f)=f_{n}$ and $\operatorname{lc}(g)=g_{m}$ and thus also $\operatorname{gcd}\left(f_{n}, g_{m}\right)$.
It follows $\operatorname{gcd}\left(f_{n}, g_{m}\right) \cdot v$ is an integer polynomial which is a constant multiple of h. It may be a nontrivial multiple (introducing a nonprimitive part) but in such a case we can just take its primitive part as h must be primitive.
In summary, when f and g are primitive we have

$$
\operatorname{gcd}_{\mathbb{Z}[x]}(f, g)=\operatorname{pp}\left(\operatorname{gcd}\left(f_{n}, g_{m}\right) \cdot \operatorname{gcd}_{\mathbb{Q}[x]}(f, g)\right) .
$$

1.1.5 Example

Suppose $\tilde{f}:=30 x^{3}-10 x^{2}+30 x-10$ and $\tilde{g}:=6 x^{2}-14 x+4$.
Since $\operatorname{gcd}(30,-10,30,-10)=10$ and $\operatorname{gcd}(6,-14,4)=2$ we can divide \tilde{f} by 10 and \tilde{g} by 2 to obtain their primitive parts and take $\operatorname{gcd}_{\mathbb{Z}[x]}(\tilde{f}, \tilde{g})=2 \operatorname{gcd}_{\mathbb{Z}[x]}(\tilde{f} / 10, \tilde{g} / 2)$.
Now suppose $f:=\tilde{f} / 10=3 x^{3}-x^{2}+3 x-1$ and $g:=\tilde{g} / 2=3 x^{2}-7 x+2$. We can compute $\operatorname{gcd}(f, g)$ over \mathbf{Q} as $x-1 / 3$:
[2]:

```
R.}\langle\textrm{x}\rangle=\textrm{QQ}[
f = 3*x^3-x^2+3*x-1
g = 3*x^2-7*x+2
gcd(f,g)
```

[2]: $x-1 / 3$

Furthermore, the leading coefficients of f and g is $f_{3}=g_{2}=3$, $\operatorname{sogcd}\left(f_{3}, g_{2}\right)=3$.
It follows that $\operatorname{gcd}_{\mathbb{Z}[x]}(f, g)=\operatorname{pp}(3 \cdot(x-1 / 3))=\operatorname{pp}(3 x-1)=3 x-1$ and $\operatorname{gcd}_{\mathbb{Z}[x]}(\tilde{f}, \tilde{g})=$ $2(3 x-1)=6 x-2$.
[3] :

```
R.\langlex> = ZZ[]
ftilde = 30*x^3-10*x^2+30*x-10
gtilde = 6*x^2-14*x+4
gcd(ftilde,gtilde)
```

[3]: $6 * x-2$

1.2 Reducing modulo p

The idea behind the modular GCD algorithm is that will reduce the coefficients of f and g modulo a prime p, perform Euclid's algorithm on f, g (as elements of $\mathbb{F}_{p}[x]$), and recover $h:=\operatorname{gcd}_{\mathbb{Z}[x]}(f, g)$ from $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$. In order for the recovery to work correctly p must be large enough so that all of the true (non-reduced) coefficients of h lie in the range $\left\{-\frac{p-1}{2}, \ldots, \frac{p-1}{2}\right\}$. This is the "symmetric" representation of \mathbb{F}_{p} and it is used instead of the standard representation (that is, $\{0, \ldots, p-1\}$) because h may have negative coefficients.

However, some primes p cause problems with this approach. For example, consider $p=3,5,7$ and computing $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$ for the above primitive polynomials $f:=3 x^{3}-x^{2}+3 x-1=\left(x^{2}+\right.$ 1) $(3 x-1)$ and $g:=3 x^{2}-7 x+2=(x-2)(3 x-1)$.

```
for p in [3, 5, 7]:
    F.<x> = GF(p)[]
    f = 3*x^3-x^2+3*x-1
    g = 3*x^2-7*x+2
    print("gcd_F{}[x](f,g) = {}".format(p, gcd(f,g)))
```

gcd_F3[x] (f, g) = 1
gcd_F5[x] (f, g) $=x^{\wedge} 2+x+4$
$\operatorname{gcd}-F 7[\mathrm{x}](\mathrm{f}, \mathrm{g})=\mathrm{x}+2$

We have the following:

$$
\begin{aligned}
\operatorname{gcd}_{\mathbb{F}_{3}[x]}(f, g) & =1 \\
\operatorname{gcd}_{\mathbb{F}_{5}[x]}(f, g) & =x^{2}+x-1 \\
\operatorname{gcd}_{\mathbb{F}_{7}[x]}(f, g) & =x+2
\end{aligned}
$$

Note that in the last case $(p=7)$ the algorithm works correctly: $\operatorname{gcd}(\operatorname{lc}(f), \operatorname{lc}(g)) \cdot \operatorname{gcd}_{\mathbb{F}_{7}[x]}(f, g) \equiv$ $3(x+2) \equiv 3 x-1(\bmod 7)$ is the true GCD of f and g over \mathbb{Z}.
However, in the first two cases ($p=3,5$) the algorithm does not work correctly, as the degree of $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$ is not correct (too small when $p=3$ and too large when $p=5$). What is going on here?

1.2.1 A criteria for nontrivial GCDs

Suppose F is a field and $f, g \in F[x]$ and $\operatorname{gcd}(f, g)=h$ over F. Recall that Euclid's algorithm allows us to find $s, t \in F[x]$ with $s f+t g=h$.

If $h \neq 1$ then there is a nontrivial solution to the equation

$$
\begin{equation*}
s f+t g=0 \text { with } \operatorname{deg}(s)<\operatorname{deg}(g) \text { and } \operatorname{deg}(t)<\operatorname{deg}(f) . \tag{*}
\end{equation*}
$$

Namely, one can take $s:=g / h$ and $t:=-f / h$. In fact, the existence of such a (s, t) provide a certificate that $\operatorname{gcd}(f, g)$ is nontrivial (see lemma 6.13 in Modern Computer Algebra).
Thus, equation $(*)$ can be used to determine if $\operatorname{gcd}(f, g)$ is trivial or nontrivial; if ($*$) has a solution then $\operatorname{gcd}(f, g) \neq 1$ and if $(*)$ has no solution then $\operatorname{gcd}(f, g)=1$.

Note that $(*)$ can equivalently be written as the following matrix-vector product equation:

$$
\left[\right]\left[\begin{array}{c}
s_{m-1} \\
s_{m-2} \\
\vdots \\
s_{0} \\
t_{n-1} \\
t_{n-2} \\
\vdots \\
t_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \in F^{n+m}
$$

Note $\operatorname{deg}(f)=n$ and $\operatorname{deg}(g)=m$ and the i th row of this expression corresponds to the coefficient of the x^{n+m-i} and hence why the right-hand side contains all zeros, as there are no terms x^{n+m-i} on the right-hand side of $(*)$. The matrix in this expression is known as the Sylvester matrix of f and g.
Linear algebra then tells us that $\operatorname{gcd}(f, g) \neq 1$ if and only if the Sylvester matrix of f and g is singular (i.e., there is a nontrivial solution of this matrix-vector equation).
The determinant of the Sylvester matrix of f and g is known as the resultant res (f, g). A matrix is singular if and only if its determinant is 0 , so we can equivalently state this as

$$
\operatorname{gcd}(f, g) \neq 1 \Longleftrightarrow \operatorname{res}(f, g)=0
$$

The above takes place over a field F but due to Gauss' theorem it can also be modified to work over \mathbb{Z} :

$$
\operatorname{gcd}_{\mathbb{Z}[x]}(f, g) \text { is nonconstant } \Longleftrightarrow \operatorname{res}(f, g)=0
$$

1.2.2 A criteria for choosing primes

The reason we introduced the resultant is because it allows an easy specification of the primes p for which the GCD over \mathbb{F}_{p} can be used to find the GCD over \mathbb{Z}.

Theorem (6.26, Modern Computer Algebra) Let $f, g \in \mathbb{Z}[x]$ be nonzero and of degrees n and m, let $h=\operatorname{gcd}(f, g)$ over \mathbb{Z}, and let p be a prime that does not divide $\operatorname{gcd}\left(f_{n}, g_{m}\right)$.
Then $\operatorname{deg} \operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g) \geq \operatorname{deg} h$ (i.e., polynomials might split "deeper" modulo p, causing $\operatorname{gcd}(f, g)$ over \mathbb{F}_{p} to be larger than the $\operatorname{gcd}(f, g)$ over \mathbb{Z}.)
Moreover, the degree of $\operatorname{gcd}(f, g)$ over \mathbb{F}_{p} will be equal to the degree of $\operatorname{gcd}(f, g)$ over \mathbb{Z} if and only if p does not divide $\operatorname{res}(f / h, g / h)$.
Furthermore, p does not divide $\operatorname{res}(f / h, g / h)$ exactly when $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g) \equiv h / \mathrm{lc}(h)(\bmod p)$. (The inverse of $\mathrm{lc}(h) \bmod p$ exists since $\mathrm{lc}(h)$ divides $\operatorname{gcd}\left(f_{n}, g_{m}\right)$ which does not have p as a divisor.)

1.3 The modular algorithm for GCDs

So the prime p must satisfy the following:

1. p does not divide $\operatorname{gcd}\left(f_{n}, g_{m}\right)$
2. p does not divide $\operatorname{res}(f / h, g / h)$
3. The coefficients of $\operatorname{gcd}\left(f_{n}, g_{m}\right) \cdot h / \mathrm{lc}(h)$ have absolute value at most $(p-1) / 2$ so they fit in the symmetric range

If p satisfies all three conditions then we can compute h, the $\operatorname{gcd}(f, g)$ over \mathbb{Z}, by:

- Using the Euclidean algorithm to compute $\operatorname{gcd}(f, g)$ over \mathbb{F}_{p}
- Multiplying this computed GCD by $\operatorname{gcd}\left(f_{n}, g_{m}\right)$ and reduce the coefficients to be in the symmetric range modulo p
- Return the primitive part of the above polynomial

1.3.1 Example

Let's compute the integer GCD of $f:=3 x^{3}-x^{2}+3 x-1=\left(x^{2}+1\right)(3 x-1)$ and $g:=3 x^{2}-7 x+$ $2=(x-2)(3 x-1)$ using this approach.
First, p must not divide $\operatorname{gcd}\left(f_{3}, g_{2}\right)=\operatorname{gcd}(3,3)=3$. Thus $p \neq 3$
Recall that $f / h=x^{2}+1$ and $g / h=x-2$, and the Sylvester matrix of these two polynomials is

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1 \\
1 & 0 & -2
\end{array}\right]
$$

which has determinant $(-2)^{2}+1=5$. Thus $p \neq 5$.
The coefficients of $\operatorname{gcd}\left(f_{3}, g_{2}\right) \cdot(3 x-1) / 3=3 x-1$ have absolute value at most 3 , so we must have $(p-1) / 2 \geq 3$, i.e., $p \geq 7$.

Thus, the simplest selection is $p=7$.
As we saw above, Euclid's algorithm computes $\operatorname{gcd}_{\mathbb{F}_{7}[x]}(f, g)=x+2$. We multiply this by $\operatorname{gcd}\left(f_{3}, g_{2}\right)=3$ to obtain $3 x+6$ which when reduced to the symmetric range is $3 x-1$ which is already primitive.

1.3.2 Caveats

One unrealistic part of this example: the conditions on p involved h so in order to properly select p we are required to know $h=\operatorname{gcd}(f, g)$ over \mathbb{Z}. But that's the very thing we are trying to compute!
How can we get around this?
We could derive an upper bound on $\operatorname{res}(f / h, g / h)$ and then select p to be larger than this. However, this is very wasteful in practice and tends to use a prime p much larger than necessary. So we will ignore the resultant condition for now.
What about the sizes of the coefficients of h ? It can be shown that the maximum coefficient of h has absolute value at most $\sqrt{n+1} \cdot 2^{n} A$ where A is an upper bound on the coefficients of f and g.

Thus if we choose a prime larger than $B:=2 \operatorname{gcd}\left(f_{n}, g_{m}\right) \sqrt{n+1} \cdot 2^{n} A$ then we can guarantee that all coefficients of h will be bounded in absolute value by $(p-1) / 2$.

It can also be shown that if you choose a random prime between B and $2 B$ then p will not divide $\operatorname{gcd}(f / h, g / h)$ with probability at least $1 / 2$. In other words, it shouldn't be hard to find a prime that works.

How can you tell if a prime works? The simplest approach is simply to verify that the purported GCD is actually a divisor of both f and g. If so, it follows that p does not divide res $(f / h, g / h)$. Why? Because if p did divide $\operatorname{res}(f / h, g / h)$ then by Thm 6.26 the degree of $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$ will be strictly larger than the true GCD h. In such a case $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$ cannot possibly divide both f and g (over \mathbb{Z}) because then it would also have to divide their GCD h which is nonsensical given that $\operatorname{gcd}_{\mathbb{F}_{p}[x]}(f, g)$ has a larger degree than h.

