
Computational Mathematics: Handout 11

Curtis Bright

December 7, 2022

1 A Modular Euclidean Algorithm

In this handout we cover a modular version of the Euclidean algorithm. This provides a way to
control the coefficient growth of the Euclidean algorithm of polynomials over coefficient fields
like Q. Note that applying the usual Euclidean algorithm on polynomials with coefficients in
Q typically causes a great increase in the size of the numerators and denominators of the inter-
mediate coefficients used in the algorithm (and in the coefficients of the s, t ∈ Q[x] provided by
the extended Euclidean algorithm, which typically explode in size even when run on coprime
a, b ∈ Q[x] with small integer coefficients).

[1]: # An example demonstrating the coefficient growth that occurs in the Euclidean␣
↪→algorithm in Q[x]

F.<x> = QQ[]
a = F(random_vector(ZZ, 10, 10).list())
b = F(random_vector(ZZ, 10, 10).list())
g, s, t = xgcd(a,b)
print(a)
print(b)
print(s)

3*xˆ9 + 7*xˆ8 + 4*xˆ7 + 8*xˆ6 + 2*xˆ5 + 3*xˆ4 + 4*xˆ3 + 6*xˆ2 + 9*x
5*xˆ9 + 7*xˆ8 + 6*xˆ7 + 3*xˆ6 + 4*xˆ5 + 7*xˆ4 + xˆ3 + 4*xˆ2
6443632968160/118131505340139*xˆ7 - 34866263779/6217447649481*xˆ6 -
958350531281/39377168446713*xˆ5 - 214215554689/39377168446713*xˆ4 +
5207481762998/118131505340139*xˆ3 + 794474335838/118131505340139*xˆ2 -
5285189195002/118131505340139*x + 1/9

Additionally, the modular approach also works in Z[x] (not just Q[x]).

1.1 GCDs in Z[x]

We’ve seen that the Euclidean algorithm does not work in Z[x] since Z is not a field. A priori it is
not even clear if the concept of GCD makes sense in Z[x] as not every ring has unique factoriza-
tion. An example of a ring that does not have unique factorization (and therefore does not have
GCDs) is the polynomial ring Z[x] with arithmetic performed modulo x2 − 3 (typically denoted
Z[x]/⟨x2 − 3⟩ = {a + b

√
3 : a, b ∈ Z}).

1

Disregarding this, a theorem of Gauss implies that GCDs do in fact exist in Z[x] and we will
develop an algorithm to compute them.

1.1.1 Irreducible polynomials

A polynomial f in Z[x] is called irreducible if it cannot be factored any further in Z[x], i.e., the
decomposition f = gh must be trivial (one of g, h ∈ Z[x] is invertible and thus ±1).

For example, x2 − 1 is not irreducible, since it factors as (x − 1)(x + 1).

Note that the irreducibility of a polynomial can depend on its coefficient ring. For example, x2 − 2
is irreducible over Z but not over R. Conversely, 2x + 2 is not irreducible over Z as it factors as
2 · (x + 1) which is nontrivial in Z (neither factor is invertible). However, 2x + 2 is irreducible over
R, since the factorization 2(x + 1) is trivial over R as 2 is invertible in R.

1.1.2 Gauss’ lemma

A polynomial is called primitive if the greatest common divisor of its coefficients is 1.

For example, 6x2 + 2x + 3 is primitive as gcd(6, 2, 3) = 1 but 6x + 3 is not primitive as gcd(6, 3) =
3.

A property of integer polynomials proven by Gauss is that the product of two primitive polyno-
mials is also a primitive polynomial.

Furthermore, a nonconstant polynomial f is irreducible (over Z) if and only if f is primitive and
f is irreducible (over Q).

In other words, for nonconstant primitive polynomials irreducibility over Z and irreducibility
over Q correspond exactly.

These properties are known as Gauss’ lemmas and using them it follows that Z[x] has unique
factorization because Q[x] has unique factorization. More generally, if R has unique factorization
then R[x] also has unique factorization.

1.1.3 Simplifying assumption

Say f , g ∈ Z[x] and we want to compute gcd(f , g) over Z. It is not a restrictive assumption to
assume that f and g are primitive, because if they were not it is easy to compute their “primitive
parts” by dividing through by the greatest common divisor of their coefficients first.

Let pp(f) be defined to be f / gcd(f0, f1, . . . , fn). In order to compute the GCD of f and g it sufficies
to compute the GCD of the “non-primitive” parts (i.e., gcd(f0, f1, . . . , fn, g0, g1, . . . , gm)) and the
GCD of the primitive parts pp(f) and pp(g). Thus, from now on we will assume that f and g
are primitive. By Gauss’ lemma this also implies their product is primitive and pp(f g) = pp(f) ·
pp(g).

1.1.4 Computing GCDs in Z[x] via GCDs in Q[x]

As stated above, we assume that f , g ∈ Z[x] are primitive and we want to compute their GCD
over Z. We already know how to compute their GCD over Q using the Euclidean algorithm.

2

Let v := gcdQ[x](f , g) be the result of applying Euclid’s algorithm. As we previously saw, by
construction v will be monic, i.e., have a leading coefficient of 1. However, its other coefficients
will very likely be over Q and not over Z; thus it is not acceptable as a GCD over Z.

Corollary 6.10 in Modern Computer Algebra states that if h is the GCD of f and g over Z then h is
primitive and

h/ lc(h) = v where lc(h) is the leading coefficient of h.

Thus, we need to multiply v by lc(h) in order to compute h. Of course, we don’t know lc(h)
since we don’t know h. However, we can find a multiple of lc(h). Because h divides f and g (by
definition it is the largest divisor) it also follows that lc(h) divides lc(f) = fn and lc(g) = gm and
thus also gcd(fn, gm).

It follows gcd(fn, gm) · v is an integer polynomial which is a constant multiple of h. It may be
a nontrivial multiple (introducing a nonprimitive part) but in such a case we can just take its
primitive part as h must be primitive.

In summary, when f and g are primitive we have

gcdZ[x](f , g) = pp
(
gcd(fn, gm) · gcdQ[x](f , g)

)
.

1.1.5 Example

Suppose f̃ := 30x3 − 10x2 + 30x − 10 and g̃ := 6x2 − 14x + 4.

Since gcd(30,−10, 30,−10) = 10 and gcd(6,−14, 4) = 2 we can divide f̃ by 10 and g̃ by 2 to obtain
their primitive parts and take gcdZ[x](f̃ , g̃) = 2 gcdZ[x](f̃ /10, g̃/2).

Now suppose f := f̃ /10 = 3x3 − x2 + 3x − 1 and g := g̃/2 = 3x2 − 7x + 2. We can compute
gcd(f , g) over Q as x − 1/3:

[2]: R.<x> = QQ[]
f = 3*x^3-x^2+3*x-1
g = 3*x^2-7*x+2
gcd(f,g)

[2]: x - 1/3

Furthermore, the leading coefficients of f and g is f3 = g2 = 3, so gcd(f3, g2) = 3.

It follows that gcdZ[x](f , g) = pp(3 · (x − 1/3)) = pp(3x − 1) = 3x − 1 and gcdZ[x](f̃ , g̃) =

2(3x − 1) = 6x − 2.

[3]: R.<x> = ZZ[]
ftilde = 30*x^3-10*x^2+30*x-10
gtilde = 6*x^2-14*x+4
gcd(ftilde,gtilde)

[3]: 6*x - 2

3

1.2 Reducing modulo p

The idea behind the modular GCD algorithm is that will reduce the coefficients of f and g modulo
a prime p, perform Euclid’s algorithm on f , g (as elements of Fp[x]), and recover h := gcdZ[x](f , g)
from gcdFp[x](f , g). In order for the recovery to work correctly p must be large enough so that all of

the true (non-reduced) coefficients of h lie in the range
{
− p−1

2 , . . . , p−1
2

}
. This is the “symmetric”

representation of Fp and it is used instead of the standard representation (that is, {0, . . . , p − 1})
because h may have negative coefficients.

However, some primes p cause problems with this approach. For example, consider p = 3, 5, 7
and computing gcdFp[x](f , g) for the above primitive polynomials f := 3x3 − x2 + 3x − 1 = (x2 +

1)(3x − 1) and g := 3x2 − 7x + 2 = (x − 2)(3x − 1).

[4]: for p in [3, 5, 7]:
F.<x> = GF(p)[]
f = 3*x^3-x^2+3*x-1
g = 3*x^2-7*x+2
print("gcd_F{}[x](f, g) = {}".format(p, gcd(f,g)))

gcd_F3[x](f, g) = 1
gcd_F5[x](f, g) = xˆ2 + x + 4
gcd_F7[x](f, g) = x + 2

We have the following:
gcdF3[x](f , g) = 1

gcdF5[x](f , g) = x2 + x − 1

gcdF7[x](f , g) = x + 2

Note that in the last case (p = 7) the algorithm works correctly: gcd(lc(f), lc(g)) · gcdF7[x](f , g) ≡
3(x + 2) ≡ 3x − 1 (mod 7) is the true GCD of f and g over Z.

However, in the first two cases (p = 3, 5) the algorithm does not work correctly, as the degree of
gcdFp[x](f , g) is not correct (too small when p = 3 and too large when p = 5). What is going on
here?

1.2.1 A criteria for nontrivial GCDs

Suppose F is a field and f , g ∈ F[x] and gcd(f , g) = h over F. Recall that Euclid’s algorithm allows
us to find s, t ∈ F[x] with s f + tg = h.

If h ̸= 1 then there is a nontrivial solution to the equation

s f + tg = 0 with deg(s) < deg(g) and deg(t) < deg(f). (∗)

Namely, one can take s := g/h and t := − f /h. In fact, the existence of such a (s, t) provide a
certificate that gcd(f , g) is nontrivial (see lemma 6.13 in Modern Computer Algebra).

Thus, equation (∗) can be used to determine if gcd(f , g) is trivial or nontrivial; if (∗) has a solution
then gcd(f , g) ̸= 1 and if (∗) has no solution then gcd(f , g) = 1.

4

Note that (∗) can equivalently be written as the following matrix-vector product equation:

fn gm

fn−1 fn
... gm

... fn−1
. . . g0

... gm

f1
... fn g0

... gm

f0 f1 fn−1 g0
...

. . .

f0
... g0 gm

. . . f1
. . .

...
f0 g0

sm−1
sm−2

...
s0

tn−1
tn−2

...
t0

=

0
0
...
0

 ∈ Fn+m

Note deg(f) = n and deg(g) = m and the ith row of this expression corresponds to the coefficient
of the xn+m−i and hence why the right-hand side contains all zeros, as there are no terms xn+m−i

on the right-hand side of (∗). The matrix in this expression is known as the Sylvester matrix of f
and g.

Linear algebra then tells us that gcd(f , g) ̸= 1 if and only if the Sylvester matrix of f and g is
singular (i.e., there is a nontrivial solution of this matrix-vector equation).

The determinant of the Sylvester matrix of f and g is known as the resultant res(f , g). A matrix is
singular if and only if its determinant is 0, so we can equivalently state this as

gcd(f , g) ̸= 1 ⇐⇒ res(f , g) = 0.

The above takes place over a field F but due to Gauss’ theorem it can also be modified to work
over Z:

gcdZ[x](f , g) is nonconstant ⇐⇒ res(f , g) = 0.

1.2.2 A criteria for choosing primes

The reason we introduced the resultant is because it allows an easy specification of the primes p
for which the GCD over Fp can be used to find the GCD over Z.

Theorem (6.26, Modern Computer Algebra) Let f , g ∈ Z[x] be nonzero and of degrees n and m,
let h = gcd(f , g) over Z, and let p be a prime that does not divide gcd(fn, gm).

Then deg gcdFp[x](f , g) ≥ deg h (i.e., polynomials might split “deeper” modulo p, causing
gcd(f , g) over Fp to be larger than the gcd(f , g) over Z.)

Moreover, the degree of gcd(f , g) over Fp will be equal to the degree of gcd(f , g) over Z if and
only if p does not divide res(f /h, g/h).

Furthermore, p does not divide res(f /h, g/h) exactly when gcdFp[x](f , g) ≡ h/ lc(h) (mod p).
(The inverse of lc(h) mod p exists since lc(h) divides gcd(fn, gm) which does not have p as a divi-
sor.)

5

1.3 The modular algorithm for GCDs

So the prime p must satisfy the following:

1. p does not divide gcd(fn, gm)
2. p does not divide res(f /h, g/h)
3. The coefficients of gcd(fn, gm) · h/ lc(h) have absolute value at most (p − 1)/2 so they fit in

the symmetric range

If p satisfies all three conditions then we can compute h, the gcd(f , g) over Z, by:

• Using the Euclidean algorithm to compute gcd(f , g) over Fp
• Multiplying this computed GCD by gcd(fn, gm) and reduce the coefficients to be in the sym-

metric range modulo p
• Return the primitive part of the above polynomial

1.3.1 Example

Let’s compute the integer GCD of f := 3x3 − x2 + 3x − 1 = (x2 + 1)(3x − 1) and g := 3x2 − 7x +
2 = (x − 2)(3x − 1) using this approach.

First, p must not divide gcd(f3, g2) = gcd(3, 3) = 3. Thus p ̸= 3

Recall that f /h = x2 + 1 and g/h = x − 2, and the Sylvester matrix of these two polynomials is1 1 0
0 −2 1
1 0 −2

which has determinant (−2)2 + 1 = 5. Thus p ̸= 5.

The coefficients of gcd(f3, g2) · (3x − 1)/3 = 3x − 1 have absolute value at most 3, so we must
have (p − 1)/2 ≥ 3, i.e., p ≥ 7.

Thus, the simplest selection is p = 7.

As we saw above, Euclid’s algorithm computes gcdF7[x](f , g) = x + 2. We multiply this by
gcd(f3, g2) = 3 to obtain 3x + 6 which when reduced to the symmetric range is 3x − 1 which
is already primitive.

1.3.2 Caveats

One unrealistic part of this example: the conditions on p involved h so in order to properly select
p we are required to know h = gcd(f , g) over Z. But that’s the very thing we are trying to compute!

How can we get around this?

We could derive an upper bound on res(f /h, g/h) and then select p to be larger than this. How-
ever, this is very wasteful in practice and tends to use a prime p much larger than necessary. So
we will ignore the resultant condition for now.

What about the sizes of the coefficients of h? It can be shown that the maximum coefficient of h
has absolute value at most

√
n + 1 · 2n A where A is an upper bound on the coefficients of f and g.

6

Thus if we choose a prime larger than B := 2 gcd(fn, gm)
√

n + 1 · 2n A then we can guarantee that
all coefficients of h will be bounded in absolute value by (p − 1)/2.

It can also be shown that if you choose a random prime between B and 2B then p will not divide
gcd(f /h, g/h) with probability at least 1/2. In other words, it shouldn’t be hard to find a prime
that works.

How can you tell if a prime works? The simplest approach is simply to verify that the purported
GCD is actually a divisor of both f and g. If so, it follows that p does not divide res(f /h, g/h).
Why? Because if p did divide res(f /h, g/h) then by Thm 6.26 the degree of gcdFp[x](f , g) will be
strictly larger than the true GCD h. In such a case gcdFp[x](f , g) cannot possibly divide both f and
g (over Z) because then it would also have to divide their GCD h which is nonsensical given that
gcdFp[x](f , g) has a larger degree than h.

7

	A Modular Euclidean Algorithm
	GCDs in \Z[x]
	Irreducible polynomials
	Gauss' lemma
	Simplifying assumption
	Computing GCDs in \Z[x] via GCDs in \Q[x]
	Example

	Reducing modulo p
	A criteria for nontrivial GCDs
	A criteria for choosing primes

	The modular algorithm for GCDs
	Example
	Caveats

