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1 Fast Multiplication and the Discrete Fourier Transform

In this handout we will introduce the discrete Fourier Transform and use it to develop a multipli-
cation algorithm that is much faster than the standard “schoolbook” algorithm.

Recall the standard algorithm uses a quadratic number of word operations (in the length of the
numbers being multiplied). In this handout we will develop an algorithm that uses a quasilinear
number of word operations.

A function f is said to be quasilinear when f (n) = O(n log(n)k) for some positive k. Sometimes
this is written as f (n) = Õ(n) (“soft O” notation) and f is said to be “softly linear”.

1.1 Improving Multiplication: Karatsuba’s Algorithm

We will now cover the first multiplication algorithm that was discovered that asymptotically beats
the quadratic running time of the standard “schoolbook” method.

This method was discovered by Anatoly Karatsuba as a student in 1960 and presented at Moscow
State University in a seminar run by Andrey Kolmogorov. Kolmogorov credited Karatsuba and
published a description of the algorithm in the Proceedings of the USSR Academy of Sciences in 1962.

The basic idea is simple: To find an alternative way of representing the multiplication of two
polynomials A and B that uses fewer coefficient multiplications than the schoolbook method.

Note that the schoolbook method multiplies two polynomials of degree n − 1 uses exactly n2

coefficient multiplications. For example, if n = 2, A = a1x + a0, and B = b1x + b0, then

AB = a1b1x2 + (a1b0 + a0b1)x + a0b0.

The schoolbook method computes this by evaluating each of the coefficient products which appear
in this expression, i.e., a1b1, a1b0, a0b1, and a0b0.

1.1.1 First Attempt: Decompose the product

Suppose A and B have even degree n = 2m. Then we can write them as

A = A1xm + A0

B = B1xm + B0
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where A0, A1, B0, B1 have degree at most m = n/2. Explicitly, we have A0 = ∑m−1
i=0 aixi and

A1 = ∑m
i=0 ai+mxi.

Now we have

AB = A1B1xn + (A1B0 + A0B1)xm + A0B0. (∗)

Computing this expression uses four multiplications of polynomials of degree at most m. How-
ever, recall that multiplication of two polynomials of degree m uses (m + 1)2 = n2/4 + n + 1 co-
efficient multiplications. The total number of coefficient multiplications using this method would
be (m + 1)2 + 2(m + 1)m + m2 = 4m2 + 4m + 1, which is (n + 1)2.

Thus we haven’t gained anything yet. However, this was only the simplest possible way of de-
composing the product AB and we can rearrange this decomposition to get an improvement.

Side question: How many coefficient additions does (∗) require? There are three additions on
polynomials of degree at most 2n:

• Adding A1B0 and A0B1
• Adding A0B0 to the result of the above (multiplied by xm)
• Adding A1B1xn to the above

Each polynomial addition uses O(n) coefficient additions, so there are O(n) total coefficient addi-
tions.

1.1.2 Alternative decomposition

Note that

(A1 + A0)(B1 + B0) = A1B1 + (A1B0 + A0B1) + A0B0.

The terms on the right have a striking similarity to the terms that appear on the right of (∗). For
example, the parenthetized expression appears as the factor in front of xm in (∗).

By adding and subtracting A1B1xm and A0B0xm on the right side the above expression and using
(∗) we derive

AB = A1B1(xn − xm) + (A1 + A0)(B1 + B0)xm + A0B0(1 − xm). (∗∗)

Computing the product AB using this expression uses only three multiplications of polynomials
of degree m, although it does use more additions.

Listing the multiplications and additions explicitly:

Multiplications:

• A1B1
• (A1 + A0)(B1 + B0)
• A0B0
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Additions:

• A1 + A0
• B1 + B0
• A0B0 added to −A0B0xm

• A1B1xn added to −A1B1xm

• (A1 + A0)(B1 + B0)xm added to A0B0(1 − xm)
• A1B1(xn − xm) added to the result of the previous line

1.1.3 Why is this a big deal?

The fact that there are additional polynomial additions isn’t a dealbreaker since polynomial addi-
tion is cheap and each of the polynomials above have degree at most 2n. But it would seem like
using this alternative decomposition isn’t that big of a deal since it only saves a single polynomial
multiplication. In other words, the number of coefficient multiplications should be 3m2 = 0.75 · n2

which is still quadratic in n.

The key insight is that we can apply this method recursively on each of the three polynomial mul-
tiplications that need to be computed. Karatsuba’s method is exactly that: compute the product
from (∗∗) and compute each of the polynomial multiplications A1B1, (A1 + A0)(B1 + B0), and
A0B0 recursively using Karatsuba’s method.

The above description started out by assuming that n was even, but it can easily be adapted to
polynomials of any degree (which is important if we are to apply it recursively).

To do this, let n = 2k be an upper bound on the degree of A and B. The above description goes
through exactly the same except that now the coefficient lists of A and B are padded with zeros (if
necessary) in order to make the coefficient list have length n + 1.

1.1.4 Cost analysis of Karatsuba’s algorithm

Recursive algorithms are usually effectively analyzed using induction and Karatsuba’s algorithm
is no different.

Let T(n) denote the cost (in terms of the number of coefficient operations) of multiplying two
polynomials of degree at most n.

In fact, Karatsuba’s algorithm uses O(nlg 3) coefficient operations (where lg denotes the base-2
logarithm).

Since n = 2k is an upper bound on the degree of polynomials, n/2 = 2k−1 is an upper bound on
the degree of the polynomials used in the recursive calls in Karatsuba’s algorithm. Since there are
3 recursive calls the recursive calls will cost at most 3T(n/2). The only other coefficient operations
are in the 4 polynomial additions of degree at most 2n. Altogether this will total at most cn oper-
ations for some constant c, e.g., c = 8 works (though this is not the best possible). Thus we have
that

T(n) ≤ 3T(n/2) + cn.

We will now prove that T(2k) ≤ c(3k+1 − 2k+1) using induction on k.
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Base case: When k = 0, T(2k) = 5 since multiplying two linear polynomials using Karatsuba’s
algorithm requires 3 coefficient multiplications and 2 coefficient additions. Therefore 5 = T(20) ≤
c(31 − 21) = c holds (when c ≥ 5).

Inductive step: Suppose that T(2k−1) ≤ c(3k − 2k). Then we have that

T(2k) ≤ 3T(2k−1) + c2k

≤ 3c(3k − 2k) + c2k by inductive hypothesis

= c(3k+1 − 2k+1) as required.

Now take k = lg n so that 2k = n and 3k = (2lg 3)k = (2k)lg 3 = nlg 3.

Then T(n) ≤ c(3nlg 3 − 2n) = O(nlg 3) and so Karatsuba’s algorithm applied to polynomials of
degree n runs in time O(nlg 3).

1.1.5 Master theorem

Note that the “master theorem” can be used to directly determine the cost of Karatsuba’s algo-
rithm.

The master theorem applies when a problem of size n is recursively solved by an algorithm that
makes a recursive calls on subproblems that are a factor of b smaller. If f (n) is the cost of splitting
the problem and combining the results to find the final solution then analyzing this algorithm
leads to the cost recurrence

T(n) = a · T(n/b) + f (n)

and when f (n) = O(nlogb a−ϵ) for some ϵ > 0 the master theorem says that T(n) = O(nlogb a).

In Karatsuba’s algorithm we have a = 3, b = 2, and f (n) = O(n).

Since f (n) = O(n) = O(nlog2 3−ϵ) for ϵ ≈ 0.58 we have that T(n) = O(nlog2 3) by the master
theorem.

1.1.6 Takeaway

Because log2 3 ≈ 1.585 Karatsuba’s method enables multiplying polynomials in O(n1.59) coeffi-
cient operations which is much faster than the standard O(n2) approach. Furthermore, Karat-
suba’s algorithm can be adapted to multiply integers and the method is also effective in practice.

For example, it has been implemented in the GMP library as one of the algorithms for multiplying
large integers. In fact, the GMP developers found that it could outperform the standard method
for integers that fit in as little as 10 words.

The following diagram shows the fastest algorithm (as benchmarked in GMP) for multiplying an
integer of length x by an integer of length y (with both axes represented on a log scale).

Karatsuba’s method appears in pink and is referred to as “toom22” because it splits both operands
into 2 parts (and is named after Andrei Toom, who in 1963 described a generalization of Karat-
suba’s method that splits the polynomial into more than 2 parts).
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1.2 Faster Multiplication: The Fast Fourier Transform

Now we will discuss an even better multiplication algorithm: one that is nearly linear in n, the
degree of the polynomials (or length of the integers). It is based on a fundamental operation that
has many varied applications: the Fourier transform.

In particular, we will cover the discrete Fourier transform (DFT) and how to compute it very effi-
ciently using an algorithm known as the fast Fourier transform (FFT). The transform is called “dis-
crete” because it operates on a discrete set of datapoints. The Fourier transform can also be applied
to continuous real-valued functions and this is very useful in fields such as signal processing.

1.2.1 Prelude: Multiplication via interpolation

Recall the algorithm for multiplying polynomials we saw that was based on interpolation. It had
the following steps for multiplying two polynomials A and B of degree n:
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1. Choose 2n + 1 distinct points and evaluate A and B at those points to get values α0, . . . , α2n
and β0, . . . , β2n.

2. Multiply the αi and βi together.
3. Use interpolation to find the unique polynomial C of degree 2n which has value αiβi at the

ith chosen point. It follows that C is the result of multiplying A by B.

We saw that steps 1 and 3 cost O(n2) while step 2 only costs O(n). This is interesting because it
is in the cheapest step where the multiplication “actually happens”; steps 1 and 3 are really just
changing the representation of the polynomial. More precisely, step 1 changes the representation
to a set of point-value pairs and then step 3 changes the representation back to a coefficient list.

How could this be improved? Note that in step 1 we have a completely free choice of which
points to evaluate A and B on. The fundamental insight that lies behind the fast multiplication
algorithm is to choose the points in such a way that steps 1 and 3 can be performed much more
quickly by exploiting the structure of the chosen points.

As mentioned above, step 1 can be viewed as “transforming” the coefficient list representation
of a polynomial to a point-value pair representation. In fact, we will now see how to choose the
points so that this transformation is given by the Fourier transform.

1.3 Enter Fourier

Joseph Fourier was a French mathematician who developed the theory behind what are now
known as Fourier series. He introduced them to solve a partial differential equation known as
the heat equation.

It was later realized that Fourier series have a huge number of other practical uses: Wikipedia
lists applications to electrical engineering, vibration analysis, acoustics, optics, signal processing,
image processing, quantum mechanics, econometrics, and shell theory, among others.

For our purposes we will use discrete Fourier series or more commonly called the discrete Fourier
transform.

1.3.1 Optimal selection of points

Which points should we choose in order to improve the multiplication-via-interpolation algo-
rithm?

One possibility would be to choose the points to be powers of a fixed base, e.g., choose the points
to be 20, 21, 22, . . . , 22n.

This choice would allow some computations to be reused. For example, in order to evaluate A(2)
one uses 2, 22, . . . , 2n and in order to evaluate A(22) one uses 22, 24 . . . , 22n (so these would not
have to be recomputed).

There are more values which could be reused but not all, since for example the evaluation of
A(22n) uses (22n)n = 22n2

which will not have been computed before. This scheme also has the
drawback that the numbers involved get extremely large. It could be improved if the numbers
involved in evaluating A were not too large and correspond exactly with the set of points.

In other words, to chose points p0, . . . , p2n so that
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{
pj

i : 0 ≤ i, j ≤ 2n
}
= {p0, . . . , p2n}.

This can be done if the points are chosen to form a group under multiplication. This is a set of
numbers containing the identity 1 and which is closed under multiplication and division. The
multiplication in a group must also satsisfy the associative law (a · b) · c = a · (b · c), though this
will always hold (indeed by definition it holds in any ring).

In particular, we will chose points p0, . . . , p2n to form a cyclic group of order 2n + 1. A cyclic group
has a generator element from which all group elements can be obtained simply by raising the
generator to higher powers.

1.3.2 Roots of unity

A root of unity is an element ω such that ωn = 1 for some positive integer n. For example, 1 is a
trivial root of unity.

If ωn = 1 then ω is also said to be an nth root of unity.

Furthermore, if ωn = 1 but ωm ̸= 1 for all 1 ≤ m < n then ω is a primitive nth root of unity.
Recall we already encountered primitive (p− 1)th roots of unity in Z∗

p when discussing the Diffie–
Hellman protocol.

It would be ideal if we could take our points to be the group generated by some (2n + 1)th primi-
tive root of unity (since we have to choose 2n + 1 points).

However, not all coefficient rings will contain contain primitive (2n + 1)th roots of unity. For
example, the only roots of unity at all in Z, Q, and R are ±1. We have that −1 is a primitive nth
root of unity for n = 2 but there are no primitive nth roots of unity in these rings for any larger n.

1.3.3 Hope is not lost!

However, it can be possible to work in a strictly larger ring which contains both

1. all the elements of the coefficient ring of the polynomials being multiplied, and
2. a primitive (2n + 1)th root of unity.

If the coefficients of the polynomials are over the integers, rationals, or the real numbers then one
conveinient choice is to work over the complex numbers C which do contain primitive nth roots
of unity for arbitrary n.

1.3.4 Primitive roots over the complex numbers

The fundamental theorem of algebra says that a polynomial of degree n has n roots (though not
necessarily distinct).

Since the nth roots of unity are exactly the roots of the polynomial xn − 1, the complex numbers
must contain nth roots of unity.
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What form do these roots take? Over the complex numbers we have the factorization

xn − 1 =
n−1

∏
k=0

(
x − e2πik/n)

so the nth roots of unity are given by e2πik/n for k = 0, 1, . . . , n − 1.

Complex exponential How does it even make sense to exponentiate a number by an imaginary
power? In fact, there is a simple and elegant answer to this seeming impossibility given by Euler’s
formula—one of the most shocking formulae in all of mathematics.

Euler’s formula says that if t is a real number then

eit = cos t + i sin t.

Intuition for Euler’s formula How are we to make sense of Euler’s formula? One way is to
realize that the function t 7→ et represents a function whose rate-of-change is equal to et at time t.
If you imagine you are in a car that is at position et at time t then your speed is exactly et at time t.

Similarly, if you are in a car that is at position ect at time t then your speed is exactly cect (i.e., c
times your current position) at time t.

What if you were in a car that had position eit at time t? To be consistent with the above your
speed should be i times your current position—except it should be velocity instead of speed since
complex numbers are actually vectors and not scalars.

Note that the “multiply-by-i” function (z 7→ i · z) is the function that applies a rotation of 90
degrees (i.e., π/2 radians) to the input but keeps the magnitude of the input the same.

Thus having a “velocity of i” means that you are being pushed sideways to your current position.
It’s as if you were in a car with the front wheels rotated 90 degrees to the left. When you try to
accelerate the car would initially move perpendicular to the road but as the car’s position changes
the act of continually having a sideways velocity relative to your current point will cause the car
to circularly rotate around a point rather than move sideways.

Thus, in a car with position eit you would start at position 1 at t = 0 with a velocity of i. This
would initially propel you upwards in the complex plane but as you move upwards the velocity
will start to change to be perpendicular to your current position. This would turn you to your to
your left and ultimately cause you to rotate in a circle around the origin.

The speed of the rotation will be
∣∣ d

dt eit
∣∣ = |ieit| = |i| · |eit|. The absolute value of a complex number

is its distance from the origin, so |i| = 1. Moreover, we’ve just seen that eit will be on the unit circle
and therefore |eit| = 1. Thus, the speed of the rotation will be exactly 1, i.e., at time t = θ the car
will have travelled exactly a distance of θ along the unit circle to arrive at the point (sin θ, cos θ).
This gives Euler’s formula eiθ = cos θ + i sin θ.

Visualization Euler’s formula implies that the roots of unity all lie the unit circle (i.e., the circle
with radius 1 and centre 0 when the complex numbers are visualized using a two-dimensional
plane).

The nth roots of unity are explicitly given by
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e2πik/n = cos
(2πk

n

)
+ i sin

(2πk
n

)
for k = 0, 1, . . . , n − 1

and the following code plots the nth roots of unity for n = 11.

[1]: n = 11
list_plot([e^(2*pi*i*k/n) for k in range(n)], aspect_ratio=1)

[1]:

As you can see, there are eleven 11th roots of unity over the complex numbers and they appear
equally-spaced along the unit circle.

In this case all but the rightmost (i.e., the root 1) are primitive 11th roots of unity. This occurs
because 11 is prime, but in general there will be more non-primitive roots of unity. For example,
the following code plots the fifteen nth roots of unity for n = 15, with the primitive nth roots of
unity in red:

[2]: n = 15
prim_roots = list_plot([e^(2*pi*i*k/n) for k in range(n) if gcd(k,n)==1],␣

↪→color=(1,0,0))
non_prim_roots = list_plot([e^(2*pi*i*k/n) for k in range(n) if gcd(k,n)>1],␣

↪→aspect_ratio=1)
non_prim_roots + prim_roots

[2]:
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1.3.5 Evaluation and interpolation at roots of unity

Let’s consider our previous algorithm for multiplying polynomials but now using roots of unity
as the chosen points.

Input: Polynomials A and B of degree at most n.

Step 0: Set N = 2n + 1 and compute the Nth roots of unity ω0, . . . , ωN−1 where ω := e2πi/N .

Step 1: Evaluate A and B at the Nth roots of unity to obtain αk and βk, i.e.,

αk := A
(
ωk), βk := B

(
ωk) for k = 0, 1, . . . , N − 1.

Step 2: For each 0 ≤ k < N multiply αk and βk.

Step 3: Interpolate C = AB from the N point-value pairs
{
(ωk, αkβk) : 0 ≤ k < N

}
.

Although this algorithm will work correctly so far this selection of points is not asymptotically
faster than any other selection of points. For example, step 1 requires computing the vector
[α0, . . . , αN−1] given by

[
A(1), A(ω), A(ω2) . . . , A(ωN−1)

]
=

[ N−1

∑
j=0

ajω
jk : 0 ≤ k < N

]
. (∗)

The factor ω jk which appears in the summation can quickly be determined in advance. Note that
the function t 7→ ωt is periodic with period N, so it follows that ω jk = ω jk mod N .
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Thus every factor ω jk appearing in the sum is one of the Nth roots of unity which have already
been computed in advance.

This saves some computing, but it still is not asymptotically faster because it still requires O(n) =
O(N) multiplications and additions to compute a single entry in this vector. Since there are N
entries in the vector computing them all still takes O(N2) operations in C.

It would seem like we’re stuck now, but a very clever trick allows us to compute the vector (∗)
much faster than computing the vector entry-by-entry. We’ll see how to compute it in almost
linear time instead of quadratic time.

1.4 The Discrete Fourier Transform

The vector appearing in (∗) is exactly the discrete Fourier transform (DFT)! The DFT takes as input
a vector [a0, . . . , aN−1] of length N and produces as output a “transformed” vector also of length
N. Formally, we say

DFT
(
[ ak : 0 ≤ k < N ]

)
:=

[ N−1

∑
j=0

aje2πijk/N : 0 ≤ k < N
]

.

Example.

Say N = 4, so ω = e2πi/N = i. We now compute DFT([a0, a1, a2, a3]) entry-by-entry.

The first entry (i.e., the entry of index k = 0) is ∑3
j=0 aji0j = ∑3

j=0 aj = a0 + a1 + a2 + a3.

The second entry is ∑3
j=0 ajij = a0 + ia1 − a2 − ia3.

The third entry is ∑3
j=0 aji2j = ∑3

j=0 aj(−1)j = a0 − a1 + a2 − a3.

The fourth entry is ∑3
j=0 aji3j = ∑3

j=0 aj(−i)j = a0 − ia1 − a2 + ia3.

As two explicit examples, we have:
DFT

(
[1, 1, 1, 1]

)
= [4, 0, 0, 0]

DFT
(
[1, 2, 3, 4]

)
= [10,−2 − 2i,−2,−2 + 2i]

1.4.1 Cost analysis

How many arithmetic operations in C does computing the discrete Fourier transform of a vector
of length N require if done entry-by-entry?

We can assume the Nth roots of unity are known during the computation; in fact they are ex-
actly {1, ω, ω2, ω3, . . . , ωN−1} where ω := e2πi/N = cos(2π/N) + i sin(2π/N). Once ω is known
computing all roots of unity uses O(N) multiplications.

Now consider computing the k entry of DFT on [a0, . . . , aN−1] which is ∑N−1
j=0 ajω

jk. Since ω jk =

ω jk mod N computing this factor requires no multiplications. However, there are still O(N) multi-
plications and additions required in order to compute this summation.

Therefore computing all N entries of the DFT uses O(N2) arithmetic operations.

So far we haven’t gained anything—but what makes the DFT special is that it can actually be
computed extremely quickly by exploiting a special property.
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1.5 The Fast Fourier Transform

The fast Fourier transform (FFT) is an algorithm that can quickly compute the DFT of a vector.

But how can we possibly improve on the O(N2) arithmetic operations used in the entry-by-entry
computation?

The trick is to not compute the DFT entry-by-entry but instead use an algorithm that computes its
entries simultaneously while exploiting the highly structured way in which the entries of the DFT
are defined.

In particular, notice what happens when you perform a DFT on only the even-index entries of a
vector and the odd-index entries replaced by 0, i.e., a vector of the form [a0, 0, a2, 0, a4, . . . , aN−2, 0]
(assuming N is even).

We have

DFT
(
[a0, 0, a2, 0, a4, . . . , aN−2, 0]

)
=

[ N−1

∑
j=0

j even

aje2πijk/N : 0 ≤ k < N
]

=

[ N/2−1

∑
j=0

a2je2πijk/(N/2) : 0 ≤ k < N
]

=
[
V; V

]
where V :=

[ N/2−1

∑
j=0

a2je2πijk/(N/2) : 0 ≤ k <
N
2

]
.

Here [V; V] denotes the concatenating V with itself (i.e., the entries in V are repeated).

Take a close look at the definition of V above. Notice anything interesting about V?

1.5.1 The trick

The main trick that makes the FFT work is that V can be expressed as a DFT of a vector shorter
than N. In fact, V is actually the DFT of [a0, a2, a4, . . . , aN−2] (a vector of length N/2) because

DFT
(
[a0, a2, a4, . . . , aN−2]

)
=

[ N/2−1

∑
j=0

a2je2πijk/(N/2) : 0 ≤ k <
N
2

]
.

A similar property holds for the vector with only the odd-index entries remaining:
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DFT
(
[0, a1, 0, a3, . . . , 0, aN−1]

)
=

[ N−1

∑
j=0

j odd

aje2πijk/N : 0 ≤ k < N
]

=

[ N/2−1

∑
j=0

a2j+1e2πi(2j+1)k/N : 0 ≤ k < N
]

=

[
e2πik/N

N/2−1

∑
j=0

a2j+1e2πijk/(N/2) : 0 ≤ k < N
]

=
[

e2πik/N : 0 ≤ k < N
]
∗
[
U; U

]
where U :=

[ N/2−1

∑
j=0

a2j+1e2πijk/(N/2) : 0 ≤ k <
N
2

]
and ∗ is pointwise multiplication

Note that the vector U here can also be expressed as the DFT of [a1, a3, . . . , aN−1] (a vector of length
N/2).

1.5.2 Why is this useful?

These expressions can be used to derive an expression for the DFT of a vector of even length N
in terms of the DFT of two vectors of length N/2. This expression is a consequence of the above
identities and as a result of the fact that the DFT is a linear operator (in other words DFT(X +Y) =
DFT(X) + DFT(Y)). In particular, we have

DFT
(
[a0, a1, . . . , aN−1]

)
= DFT

(
[a0, 0, a2, 0 . . . , aN−2, 0]

)
+ DFT

(
[0, a1, 0, a3, . . . , 0, aN−1]

)
=

[
V; V

]
+

[
e2πik/N : 0 ≤ k < N

]
∗
[
U; U

]
where V = DFT

(
[a0, a2, . . . , aN−2]

)
and U = DFT

(
[a1, a3, . . . , aN−1]

)
.

Denoting the entries of V by vk and the entries of U by uk (for 0 ≤ k < N/2) it follows that:

• The kth entry of the DFT of [a0, . . . , aN−1] is vk + e2πik/Nuk.
• The (k + N/2)th entry of the DFT of [a0, . . . , aN−1] is vk − e2πik/Nuk (because e2πi(N/2)/N =

eπi = −1).

1.5.3 Cost Analysis

As before, we can write ω := e2πi/N and compute all Nth roots of unity using O(N) multipli-
cations once ω is known. All other field operations are either additions or multiplications by an
appropriate power of ω.

For simplicity, suppose N is a power of two so that every recursive case splits cleanly.

Let T(N) denote the number of field operations required to compute a DFT of length N using the
fast Fourier transform.

Base case. T(1) = 0 since DFT([x]) = [x] for a scalar x.
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Recursive case. Computing a DFT of length N requires computing the two DFTs V and U of length
N/2. It is then necessary to compute ωkuk for 0 ≤ k < N/2 which uses N/2 multiplications as
well as vk ± ωkuk for 0 ≤ k < N/2 which uses N/2 additions and N/2 subtractions.

In total, this means we have the recurrence T(N) = 2T(N/2) + 3N/2.

The master theorem with a = b = 2 and f (n) = 3n/2 can be used on this recurrence. We have
that f (n) = Θ(nlogb a) so the master theorem implies that T(n) = O(nlogb a log n) = O(n log n).

1.6 The Inverse Fourier Transform

The fast Fourier transform allows us to evaluate a polynomial at roots of unity {ωk : 0 ≤ k < N }
very quickly.

What about the inverse operation? Given a vector containing the evaluations of a polynomial at
roots of unity can we find the polynomial quickly?

In other words, from the evaluations
[

f (1), f (ω), f (ω2), . . . , f (ωN−1)
]

find the unique polyno-
mial f of degree at most N − 1 which produces those evaluations.

In fact, we will show that the inverse problem is essentially just a discrete Fourier transform with
ω replaced by ω−1, the multiplicative inverse of ω (which is also a root of unity).

Let [a0, . . . , aN−1] be the coefficient vector of f and let [A0, . . . , AN−1] be the vector of evaluations
of f at powers of ωk for 0 ≤ k < N (i.e., the DFT of the coefficient vector).

Let’s compute the discrete Fourier transform of [A0, . . . , AN−1] but using the root of unity ω−1

instead of ω. The lth entry of this vector will be

N−1

∑
k=0

Ak(ω
−1)kl =

N−1

∑
k=0

N−1

∑
j=0

ajω
jkω−kl

=
N−1

∑
k=0

N−1

∑
j=0

ajω
k(j−l)

=
N−1

∑
j=0

aj ·
N−1

∑
k=0

ωk(j−l)

=
N−1

∑
j=0

aj ·
{

∑N−1
k=0 ω0 if j = l

∑N−1
k=0 ω̃k

j if j ̸= l, where ω̃j is some root of unity not equal to 1

=
N−1

∑
j=0

aj ·
{

N if j = l
0 if j ̸= l, since ∑N−1

k=0 ω̃k = ω̃N−1
ω̃−1 = 1−1

ω̃−1 = 0

= Nal

Let DFTω denote the discrete Fourier transform using the root of unity ω. Then we have shown
that

DFTω−1(DFTω([a0, . . . , aN−1])) = [Na0, Na1, . . . , NaN−1].

Dividing both sides by N,
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1
N

DFTω−1(DFTω([a0, . . . , aN−1])) = [a0, . . . , aN−1].

In other words, the inverse of the discrete Fourier transform DFTω is given by 1
N DFTω−1 .

Example.

Recall that DFTω

(
[1, 2, 3, 4]

)
= [10,−2 − 2i,−2,−2 + 2i] where ω = e2πi/4 = i.

To reverse this operation we compute DFTω−1

(
[10,−2 − 2i,−2,−2 + 2i]

)
and then multiply by

1
N = 1

4 . Computing this vector entry-by-entry:

Its first entry is 10 + (−2 − 2i) + (−2) + (−2 + 2i) = 4.

Its second entry is
10+(−2− 2i)ω−1 +(−2)ω−2 +(−2+ 2i)ω−3 = 10+(−2− 2i)(−i)+ (−2)(−1)+ (−2+ 2i)(i) = 8.

Its third entry is
10+(−2− 2i)ω−2 +(−2)ω−4 +(−2+ 2i)ω−6 = 10+(−2− 2i)(−1)+ (−2)+ (−2+ 2i)(−1) = 12.

Its fourth entry is
10+(−2− 2i)ω−3 +(−2)ω−6 +(−2+ 2i)ω−9 = 10+(−2− 2i)(i)+ (−2)(−1)+ (−2+ 2i)(−i) = 16.

Thus 1
N DFTω−1

(
[10,−2 − 2i,−2,−2 + 2i]

)
= 1

4 [4, 8, 12, 16] = [1, 2, 3, 4] as expected.

1.6.1 Computation

Note that the FFT algorithm also equally applies to computing DFTω−1 quickly; one merely re-
places ω with ω−1 when performing the FFT.

1.7 Fast Multiplication: Putting it Together

Combining the fast Fourier transform with the evaluation/interpolation multiplication algorithm
we finally achieve a fast multiplication algorithm.

In detail, the steps of the algorithm are as follows on input polynomials f , g ∈ C[x] of degree n:

Let N := 2n + 1 and ω := e2πi/N . Say A and B are the coefficient vectors of f and g (extended
with zeros to be of length N).

Step 1. Compute DFTω(A) and DFTω(B) using the fast Fourier transform.

Step 2. Compute the entrywise product C := DFTω(A) ∗ DFTω(B).

Step 3. Compute DFT−1
ω (C) using the fast Fourier transform. Its entries will be the coefficient

vector of the product f · g.

The correctness of this algorithm follows from the correctness of the evaluation/interpolation mul-
tiplication algorithm.

It also relies on the fact that computing a DFT is equivalent to evaluatating a polynomial at powers
of ω and computing an inverse DFT is equivalent to interpolating a polynomial from its evalua-
tions at powers of ω.
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1.7.1 Cost analysis

Step 1 does two FFTs and uses O(N log N) operations.

Step 2 does N coefficient multiplications and uses O(N) operations.

Step 3 does one inverse FFT and uses O(N log N) operations.

Since N = 2n + 1 these costs can equivalently be presented using n instead of N.

Thus, in total we can multiply two polynomials of degree n using O(n log n) operations.

1.7.2 Caveats

This analysis assumed we were working over the complex numbers where primitive Nth roots of
unity exist.

The algorithm can also be used over any field containing primitive Nth roots of unity, though they
do not exist in all fields. Primitive (p − 1)th roots of unity do exist in Z∗

p but they do not exist in
Q or R (with the exception of −1).

If p is a prime of the form k2m + 1 then Z∗
p contains a primitive Nth root of unity with N := 2m so

the multiplication algorithm we described will also work to multiply two polynomials in Zp[x] of
degree less than N/2.

The algorithm can also be adapted to coefficient rings like which do not contain primitive roots of
unity by constructing “artificial” primitive roots of unity. This increases the total running cost by
a factor of log log N.

1.8 Integer Multiplication

The algorithm can also be relatively straightforwardly adapted to multiply integers quickly.

In 1971, A. Schönhage and V. Strassen presented an FFT-based algorithm for multiplying two inte-
gers of n words that runs in O(n log n log log n) word operations. Their algorithm is also effective
in practice (e.g., it is implemented in the GMP library).

Slight improvements to this running time were discovered by various researchers over the past
fifty years.

Surprisingly, it was only in 2019 when D. Harvey and J. van der Hoeven presented an algo-
rithm matching the polynomial multiplication runtime and multiplies two integers of n words
in O(n log n) word operations. (However, their algorithm is purely theoretical and not used in
practice.)

1.8.1 Can this be improved?

It is currently unknown if multiplication algorithms exist that use fewer than O(n log n)
word/coefficient operations—none have ever been found.

Some researchers have conjectured that O(n log n) word/coefficient operations is indeed the
fastest possible running time of multiplication.
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