
Computational Mathematics: Handout 08

Curtis Bright

October 26, 2022

1 Polynomial Evaluation and Interpolation

This handout covers the two classic problems of evaluating a polynomial (determining its value
at a point or series of points) and interpolating a polynomial (given a series of points determine a
polynomial that passes through those points).

1.1 Evaluating a Polynomial

For simplicity we’ll focus on integer polynomials.

Problem: Given a polynomial f ∈ Z[x], i.e., f (x) = ∑n
i=0 aixi, and a value α ∈ Z determine the

value f (α).

Solution: Compute α2, α3, . . . , αn, then for each i = 0, . . . , n multiply αi by ai, and then add all
these values together.

1.1.1 Cost analysis

• Computing αi from αi−1 requires one multiplication, so computing α2, α3, . . . , αn uses n − 1
multiplications.

• Computing aiα
i for i = 0, . . . , n uses another n multiplications (for i = 0 there is no multipli-

cation).
• Adding together the values aixi for i = 0, . . . , n uses n additions.

In total: 2n − 1 multiplications and n additions.

1.1.2 Horner’s method

Horner’s method allows us to do a bit better. It is based on the observation that you can factor x
out of every term of a polynomial except the first:

f (x) = a0 + x(a1 + a2x + · · · anxn−1).

Computing f (α) using this expression would save a multiplication, since the expression in paren-
theses is itself a polynomial of degree n − 1 which can be evaluated using 2(n − 1)− 1 = 2n − 3
multiplications. Then this expression can be multiplied by α and added to a0 to get the final an-
swer.

However, the same trick applies to the expression in parentheses so it can be applied recursively.
This leads to the expression

1



f (x) = a0 + x
(
a1 + x

(
a2 + · · ·+ x(an−1 + xan) · · · )

))
.

Now computing f (α) can be done by evaluating each parenthesized expression in turn.

1.1.3 Cost analysis

The first parenthetized expression p1 := an−1 + αan requires a single multiplication and addition.

The second parenthetized expression p2 := an−2 + αp1 also requires a single multiplication and
addition.

Continuing in this way, we eventually compute f (α) = pn = a0 + αpn−1.

In total, we compute p1, . . . , pn using n multiplications and additions.

1.1.4 Can we do better?

In fact, in general it can be shown that Horner’s method is optimal, at least if the polynomial f is
arbitrary.

• In 1954, A. Ostrowski showed that the number of additions could not be improved
• In 1966, V. Pan showed that the number of multiplications could not be improved.

1.2 Baby Steps, Giant Steps

We saw that Horner’s method is optimal, but sometimes we can do better! The optimality results
only apply to general polynomials and we will see how we can do better if f is not arbitrary but
fixed.

Suppose f is fixed and known in advance, so that its coeficients a0, . . . , an are considered constants,
not indeterminants that might change.

We call multiplication by a constant (like ai) a “scalar” multiplication. Often it is the case that
scalar multiplications can be performed much quicker than general multiplications. In such a case
it makes sense to treat them separately.

1.2.1 Paterson and Stockmeyer

In 1973, Paterson and Stockmeyer developed the following method for polynomial evaluation
known as “Baby Steps, Giant Steps”.

The idea is that we can split f up to approximately
√

n chunks of length
√

n. Of course
√

n is often
not an integer but we can round it to one if necessary. Let k =

⌈√
n + 1

⌉
. Then we can write f (x)

as

2

https://doi.org/10.1016/B978-1-4832-3272-0.50010-7
https://doi.org/10.1070/RM1966v021n01ABEH004147
https://doi.org/10.1137/0202007


(a0 + a1x + · · ·+ ak−1xk−1) +

(ak + ak+1x + · · ·+ a2k−1xk−1)xk +

(a2k + a2k+1x + · · ·+ a3k−1xk−1)x2k +

...

(ak2−k + ak2−k+1x + · · ·+ ak2−1xk−1)xk2−k.

Since k2 − 1 ≥ n all terms aixi of f will appear in this decomposition of f . (In the case that
k2 > n + 1 there will also be some additional zeros at the end, but we simply take ai = 0 when i is
larger than the degree of f .)

1.2.2 Evaluation method

Now, to evaluate f (α) we start by computing α2, α3, . . . , αk which requires k − 1 multiplications.
These quantities will appear in the parenthesized expressions in the above decomposition for f (x).

However, the quantities αk, α2k, α3k, . . . , αk2−k also appear in the decomposition. Normally, it
would take O(n) multiplications to evaluate these because k2 − k is approximately n.

Can you see a trick to evaluate αk, α2k, . . . , αk2−k quicker than by evaluating αi for every possible
i = 1, . . . , n?

The “Giant Steps” trick The trick is that each quantity in the sequence αk, α2k, α3k, . . . , αk2−k is
equal to the previous quantity multiplied by αk.

We already computed αk in the previous step (the last of the “baby steps”). Now let β := αk and
we perform the “giant steps” by computing

α2k = β2

α3k = β3

...

αk2−k = βk−1.

This requires k − 2 multiplications.

Now we have everything we need to evaluate f (α), since we have the decomposition

f (α) =
k−1

∑
i=0

βi βi where βi :=
k−1

∑
j=0

aki+j αj.

Computing β0, . . . , βk−1 requires only additions and scalar multiplications because the αj are al-
ready known and the aki+j are constants.

3



Computing β1 · β, β2 · β2, . . . , βk−1 · βk−1 requires k − 1 another non-scalar multiplications.

Finally, adding together βi · βi for i = 0, . . . , k − 1 only requires additions.

Cost analysis summary

• Computing α2, . . . , αk uses k − 1 multiplications.
• Computing αk, α2k, . . . , αk2−k uses k − 2 multiplications.
• Computing β0, . . . , βk−1 requires only additions and scalar multiplications.
• Computing f (α) = ∑k−1

i=0 βiβ
i requires additions and k − 1 multiplications.

We will avoid counting additions and scalar multiplications (as mentioned, these can often be
done quickly).

In total, this algorithm uses 3k − 4 non-scalar multiplications, which is O(
√

n).

1.2.3 Application

Say you want to evaluate the “matrix polynomial” f (M) := a0 + a1M + · · · an Mn where M is an
m × m matrix.

A matrix multiplication is expensive: naively it requires O(m3) ring operations.

Conversely, matrix multiplication by a constant is relatively cheap: it requires only O(m2) ring
operations.

This is a perfect application for the baby steps, giant steps algorithm which allows computing
f (M) using O(

√
n) matrix multiplications instead of O(n) matrix multiplications.

1.2.4 Horner + baby steps, giant steps

One last thing: Horner’s method can also be used to speed up the baby steps, giant steps algo-
rithm. Instead of evaluating

f (α) =
k−1

∑
i=0

βi βi

directly, use Horner’s method to evaluate f (α) via

f (α) = β0 + β(β1 + · · ·+ β(βk−2 + ββk−1) · · · ).

Now f (α) can be computed using k − 1 multiplications. This is the same as before, except that
each multiplication is always by β exactly.

Now β2, . . . , βk−1 do not have to be explicitly computed so k − 2 non-scalar multiplications are
saved. The total number of non-scalar multiplications is still O(k), however.

1.3 Polynomial Interpolation

Next we consider the “inverse” problem: Given a sequence of points α0, . . . , αn−1 and the values
of a polynomial f at those points (i.e., f (α0), . . . , f (αn−1)) determine the value of f .

4



1.3.1 Uniqueness

The first thing to note is that f cannot be unique unless you place a restriction on its degree.
However, in the same way that two points define a line (a polynomial of degree 1), in general n
points will define a polynomial of degree n − 1.

Suppose there were two polynomials f1 and f2 of degree n− 1 that agree on the points α0, . . . , αn−1.
Then f1 − f2 is a polynomial of degree at most n − 1 with n roots α0, . . . , αn−1.

Assuming the coefficients are from a field F, any nonzero polynomial of degree n has at most n
roots in F. Since f1 − f2 has more roots than its degree it must be the zero polynomial; thus f1 = f2.

Thus, the precise problem is as follows: Given n distinct points α0, . . . , αn−1 and the n evaluations
β0, . . . , βn−1, determine the unique polynomial f of degree at most n − 1 with f (αi) = βi.

1.3.2 Lagrange’s formula

We will solve the interpolation problem by “building” up an f out of components in such a way
that f (αi) = βi will hold by construction.

First, we make the following observation: the polynomial (x − α0) · · · (x − αn−1) is zero at the
points α0, . . . , αn−1. This isn’t directly useful but what is more useful is that if one factor (say
x − αj) is left off then our polynomial will still be zero at all points αi except for i = j. In other
words,

n−1

∏
i=0
i ̸=j

(x − αi) =

{
0 if x ∈ { αi : i ̸= j }
∏i ̸=j(αj − αi) if x = αj.

Dividing both sides by ∏i ̸=j(αj − αi) gives

n−1

∏
i=0
i ̸=j

x − αi

αj − αi
=

{
0 if x ∈ { αi : i ̸= j }
1 if x = αj.

This quantity is known as the Lagrange interpolant and we’ll call it Lj.

Using the quantities Lj it is straightforward to construct a polynomial f that evaluates to anything
that we want on the points αi. In fact, a simple consequence of the Lagrange interpolant formula
is that

f (x) :=
n−1

∑
j=0

β jLj(x)

satisfies f (αi) = βi.

Each Lj has degree n− 1, so f has degree at most n− 1. In general f will have degree n− 1 exactly,
but it is possible for some terms to cancel giving it a smaller degree. For example, if βi = 0 for all
i then f will be the zero polynomial.

5



1.3.3 Example

Find the polynomial of degree at most 3 through the points (−1, 1), (0, 0), (1, 1).

Then

L0 :=
x − 0
−1 − 0

· x − 1
−1 − 1

=
x(x − 1)

2
,

L1 :=
x − (−1)
0 − (−1)

· x − 1
0 − 1

= −(x + 1)(x − 1),

L2 :=
x − (−1)
1 − (−1)

· x − 0
1 − 0

=
x(x + 1)

2
,

and

f (x) = 1 · L0 + 0 · L1 + 1 · L2 =
x(x − 1)

2
+

x(x + 1)
2

= x2.

Amazingly, appropriate sums of L0, L1, and L2 can be used to find a polynomial of degree at most
2 through any arbitrary points at x = −1, 0, 1.

Plotting L0, L1, L2 might help you see this visually; note that each of these polynomials evaluate to
exactly {0, 0, 1} (in some order) at x = −1, 0, 1.

[1]: plot([x*(x-1)/2, -(x+1)*(x-1), x*(x+1)/2])

[1]:

6



1.3.4 Cost analysis

Evaluating the denominator of Lj, i.e., ∏i ̸=j(αj − αi), requires n − 1 subtractions and n − 2 mul-
tiplications in the coefficient field; doing this for j = 0, . . . , n − 1 then requires O(n2) coefficient
operations.

Evaluating the numerator of Lj, i.e., ∏i ̸=j(x − αi), requires multiplying n − 1 linear polynomials
together. Doing this iteratively requires multiplying a polynomial of degree i with a polynomial of
degree 1 for i = 1, . . . , n − 2. In total, this is ∑n−2

i=1 O(i) = O(n2) coefficient operations to evaluate
one Lj. Over all 0 ≤ j < n this uses O(n3) coefficient operations.

Improvement: The computation of Lj for all j can be improved. Instead, compute L := ∏n−1
i=0 (x −

αi) iteratively (like above) which uses ∑n−1
i=1 O(i) = O(n2) coefficient operations. Then compute

Lj :=
L

x − αj
for j = 0, . . . , n − 1.

Each division is performed between a polynomial of degree n and a polynomial of degree 1, so
each division uses O(n) coefficient operations. Thus all Lj can be computed in O(n2) coefficient
operations using this improved approach.

Lastly, we want to evaluate the sum ∑j β jLj. Multiplying β j by Lj uses O(n) multiplications; in
total this uses ∑n−1

j=0 O(n) = O(n2) multiplications. Adding βiLi to ∑i−1
j=0 β jLj uses O(n) additions

so doing this for i = 1, . . . , n − 1 uses O(n2) total additions.

In summary: Using Lagrange’s interpolation formula on n points requires O(n2) coefficient oper-
ations to reconstruct the polynomial f assuming we use the improved approach to compute the
Lagrange interpolants Lj.

1.4 Secret Sharing

A nice application of interpolation is secret sharing: You want to share a secret among n parties
so that they can only determine the secret if everyone works together; any subset of n − 1 people
cannot determine the secret.

The scheme relies on the fact that a polynomial of degree n − 1 can be efficiently determined from
n points by using Lagrange interpolants.

1.4.1 Description

Suppose you want to distribute a secret with k bits among n people. Let p be a prime larger than
2k and let F := Fp = {0, . . . , p − 1} be the field of integers modulo p.

Let a0 ∈ F be the secret that you want to share. Randomly and uniformly select
a1, . . . , an−1, α0, . . . , αn−1 ∈ F subject to the constraint that the αi are nonzero and mutually dis-
tinct.

Now construct f (x) := ∑n−1
i=0 aixi ∈ F[x] and evaluate f at the points α0, . . . , αn−1. Let βi := f (αi)

for 0 ≤ i < n.

Now give party i the quantity (αi, βi).

7



Now all n parties can come together and perform interpolation on the points
(α0, β0), . . . , (αn−1, βn−1) to reconstruct the unique polynomial of degree n − 1 through these
points. Since the polynomial is unique it must match f exactly and therefore its constant term a0
reveals the secret.

Why does this work? If any n − 1 parties (say for 0 ≤ i < n − 1) come together they can find a
polynomial g with g(αi) = βi for 0 ≤ i < n − 1.

However, they don’t know βn−1 so they cannot enforce g(αn−1) = βn−1. It is unlikely that the
polynomial g satisfies this; essentially, any value of F is equally likely for the value of g(αn−1).

Similarly, it is unlikely that g(0) = a0 and the constant term of g provides no information about
the constant term of f .

1.5 Application to Polynomial Multiplication

We will now use polynomial interpolation to give an algorithm for multiplying polynomials that
uses a linear number of non-scalar multiplications (where the non-scalars are taken to be the coeffi-
cients of the polynomials being multiplied).

Warning: The algorithm is not linear when analyzed in terms of the usual cost of coefficient op-
erations. It may even be slower than the “schoolbook” method in terms of coefficient operations.
However, we’ll see how the idea behind this algorithm can be used to design a faster algorithm
for polynomial multiplication in terms of coefficient operations.

1.5.1 Multiplication via interpolation

Suppose that we want to multiply two polynomials f , g ∈ F[x] of degree n. Say h(x) := f (x) · g(x)
is the product of f and g that we want to find.

Choose distinct scalars α0, . . . , α2n ∈ F. Evaluate f and g at these scalars; say

βi := f (αi) and γi := g(αi) for 0 ≤ i ≤ 2n.

Now compute δi := βi · γi for 0 ≤ i ≤ 2n.

Then h(αi) = f (αi) · g(αi) = βi · γi = δi, so the points (α0, δ0), . . . , (α2n, δ2n) are 2n + 1 points that
lie on the graph of h. Since h has degree 2n it is uniquely defined by 2n + 1 distinct points.

Thus applying interpolation to the points (αi, δi) for 0 ≤ i ≤ 2n recovers the polynomial h which
is the product of f and g.

1.5.2 Non-scalar cost analysis

First, let’s analyze the cost of this multiplication algorithm in terms of the number of non-scalar
multiplications. The non-scalars are the coefficients of the polynomials f and g. The points αi are
considered to be scalars since they can be fixed in advance and do not depend on the input.

Computing f (αi) and g(αi) do not require any non-scalar multiplications because αi, α2
i , . . . , αn

i are
also all scalars. Thus the only multiplications necessary for computing f (αi) are scalar-times-non-
scalar multiplications.

8



However, the results βi = f (αi) and γi = g(αi) are non-scalar quantities, so computing the δi =
βi · γi uses 2n + 1 non-scalar multiplications.

Performing interpolation requires no non-scalar multiplications: The Lagrange interpolants Lj

purely involve scalars, while computing the sum h(x) := ∑2n
j=0 δj · Lj(x) only involves additions

and scalar-times-non-scalar multiplications.

Thus, this algorithm for multiplying polynomials uses O(n) non-scalar multiplications.

1.5.3 Cost analysis in terms of coefficient operations

Unfortunately, the algorithm is not optimal in terms of coefficient operations. Computing f (αi)
for a single i uses O(n) coefficient operations, so it costs O(n2) when done for all 0 ≤ i ≤ 2n.
Similarly, computing g(αi) for all i costs O(n2).

Computing δi = βi · γi is a single multiplication so this costs O(n) when done for all 0 ≤ i ≤ 2n.

Finally, we saw that interpolating a polynomial of degree n costs O(n2), so interpolating a poly-
nomial of 2n also costs O(n2).

1.5.4 Takeaway

The cost of an algorithm in terms of non-scalar multiplications may be much better than the cost
in terms of general operations. Whether or not the non-scalar cost is useful in practice depends on
the context.

In some contexts (e.g., when the αi ∈ F are much easier to compute with than the general coef-
ficients of f and g) the non-scalar multiplication cost might be more relevant. In other contexts,
the total number of operations used might be more relevant. Whenever you are analyzing an
algorithm you need to make sure the cost model is explicit.

1.5.5 Foreshadowing

Finally, note that this multiplication algorithm only requires the αi to be distinct and there are no
other restrictions—you can choose the αi however you like.

This foreshadows a potential way of improving this algorithm: choose the αi in a way that some-
how makes the evaluation and interpolation easier to perform.

In fact, in the next section we will see that it is possible to choose the αi in a way that allows the
computations to be performed much faster.

9


	Polynomial Evaluation and Interpolation
	Evaluating a Polynomial
	Cost analysis
	Horner's method
	Cost analysis
	Can we do better?

	Baby Steps, Giant Steps
	Paterson and Stockmeyer
	Evaluation method
	Application
	Horner + baby steps, giant steps

	Polynomial Interpolation
	Uniqueness
	Lagrange's formula
	Example
	Cost analysis

	Secret Sharing
	Description

	Application to Polynomial Multiplication
	Multiplication via interpolation
	Non-scalar cost analysis
	Cost analysis in terms of coefficient operations
	Takeaway
	Foreshadowing



