Computational Mathematics: Handout 12

Curtis Bright

March 7, 2024

1 Factoring Polynomials

In this handout we cover how to factor polynomials-in particular, we give a polynomial time algorithm for factoring polynomials whose coefficients are in a finite field. That is, given an $f \in$ $\mathbb{F}_{q}[x]$, write it as the decomposition

$$
f=f_{1} \cdot f_{2} \cdots f_{n}
$$

where f_{1}, \ldots, f_{n} are irreducible polynomials. An irreducible polynomial is one that cannot be written as a nontrivial product, i.e., f is irreducible exactly when $f=g h$ implies at least one of g and h are a constant polynomial. Because the coefficients are from a field, all of the leading coefficients of the polynomials f_{i} are invertible. Thus, one can write the decomposition as

$$
\begin{equation*}
f=c f_{1} \cdot f_{2} \cdots f_{n} \tag{*}
\end{equation*}
$$

where $c \in \mathbb{F}_{q}$ and all the f_{i} are monic (have a leading coefficient of 1). We consider the factorization problem as finding the decomposition (*) given f. By dividing both sides by c we also make the leading coefficient on the left-hand side also 1 . Thus, without loss of generality we will assume that the f to factor is monic.

Throughout this handout the reader can think of \mathbb{F}_{q} as being \mathbb{Z}_{p} (i.e., the field of residues modulo a prime p), as \mathbb{Z}_{p} is the simplest kind of finite field. However, the algorithms we discuss will also work in general finite fields \mathbb{F}_{q}.

1.1 Roadmap

We will break the problem of factoring $f \in \mathbb{F}_{q}[x]$ into various special cases. One important special case is to handle the case when f is squarefree, meaning that in the decomposition $f=\prod_{i} f_{i}$ all of the f_{i} are distinct. That is, a polynomial is squarefree when it is not divisible by the square any polynomial (except constant polynomials). For example, $f=(x+1)^{2}$ is not squarefree and $f=(x+1)(x-1)$ is squarefree over any field \mathbb{Z}_{p} with $p>2$.
A second special case of the factoring problem is to f into distinct-degree factors, i.e., write f as $f=g_{1} \cdots g_{n}$ where g_{i} is the product of all irreducible factors of degree i. For example, if $f=$ $(x+1)^{2}(x-1)\left(x^{2}+3\right)\left(x^{3}+x+1\right) \in \mathbb{F}_{5}[x]$ then $g_{1}=(x+1)^{2}(x-1), g_{2}=x^{2}+3, g_{3}=x^{3}+x+1$, and $g_{4}=\cdots=g_{8}=1$.

The third special case is to factor the g_{i} that appear in the distinct-degree factorization. That is, given a $g_{i} \in \mathbb{F}_{q}[x]$ of degree d whose irreducible factors are all guaranteed to be of a known degree i (and hence there must be d / i of them), find all d / i irreducible factors $g_{i}=h_{1} \cdots h_{d / i}$. For example, given $g_{1}=x^{3}+x^{2}-x-1 \in \mathbb{F}_{5}[x]$ (which is a product of only linear factors), find its decomposition into linear factors $g_{1}=(x+1)^{2}(x-1)$.

1.2 Distinct-degree Factorization

First, we consider the problem of taking a squarefree monic $f \in \mathbb{F}_{q}[x]$ of degree n and writing it as the product $g_{1} \cdots g_{n}$ where g_{i} is the product of the irreducible polynomials of degree i dividing f. Our algorithm for doing this will be based on a generalization of Fermat's little theorem in $\mathbb{F}_{q}[x]$.

1.2.1 Fermat's Little Theorem

Recall Fermat's little theorem says if p is prime then $a^{p} \equiv a(\bmod p)$, i.e., all $a \in \mathbb{Z}_{p}$ are roots of the polynomial $x^{p}-x \in \mathbb{Z}_{p}[x]$. In fact, over general finite fields \mathbb{F}_{q} one still has that all $a \in \mathbb{F}_{q}$ are roots of $x^{q}-x$. Thus, Fermat's little theorem can equivalently be written as

$$
x^{q}-x=\prod_{a \in \mathbb{F}_{q}}(x-a) .
$$

Thus, given f one can compute g_{1}, the product of all linear factors of f, via $g_{1}:=\operatorname{gcd}\left(f, x^{q}-x\right)$.
Generalizing this, one can also show that

$$
x^{q^{2}}-x=\prod_{\substack{\alpha \in \mathbb{F}_{q}[x], \text { irred. } \\ \operatorname{deg}(\alpha) \leq 2}} \alpha(x) .
$$

In follows that once the linear factors of f have been removed (by dividing by g_{1}) one can find g_{2}, all the quadratic factors of f / g_{1}, via $g_{2}:=\operatorname{gcd}\left(f / g_{1}, x^{q^{2}}-x\right)$.

This process can be generalized; the proper generalization of Fermat's last theorem that enables finding all irreducible factors of degree $d \geq 1$ is

$$
x^{q^{d}}-x=\prod_{\substack{\alpha \in \mathbb{F}_{q}[x], \text { irred. } \\ \operatorname{deg}(\alpha) \mid d}} \alpha(x) .
$$

Once all factors of f less than degree d have been removed from f (via $f \cdot \prod_{i<d} g_{i}^{-1}$) all irreducible factors of degree exactly d is found with $g_{d}:=\operatorname{gcd}\left(f \cdot \prod_{i<d} g_{i}^{-1}, x^{q^{d}}-x\right)$.

1.2.2 Efficiency

How efficient would this be? If it was computed directly it would be an issue, since it would require $O\left(n q^{d}\right)$ field operations for computing $\operatorname{gcd}\left(f, x^{q^{d}}-x\right)$ where $\operatorname{deg}(f)=n$. Since $d=\Theta(n)$ in the worst case, computing this gcd would take exponential time in n. Thus, this proposed approach is seemingly totally infeasible.

A simple observation reduces the exponential running time to a polynomial one. Note that when $\operatorname{gcd}\left(f, x x^{q^{d}}-x\right)$ the polynomial does not need to be constructed explicitly; it is enough to construct the polynomial $x^{q^{d}}-x \bmod f$ which has degree at most n. At first this might not seem useful, since computing $x^{q^{d}}-x \bmod f$ directly would also require exponential time.
However, we can use repeated squaring in order to compute the modular exponentiation $x^{q^{d}} \bmod$ f efficiently. Also, since

$$
x^{q^{d}} \bmod f=\left(x^{q^{d-1}} \bmod f\right)^{q} \bmod f
$$

and $x^{q^{d-1}} \bmod f$ was used on the previous iteration (in order to extract the factors of $d-1$ from f). Thus, on the i th iteration one can save $x^{q^{i}} \bmod f$ and reuse it on iteration $i+1$ without needed to recompute it.

1.2.3 Pseudocode

Input: Squarefree and monic $f \in \mathbb{F}_{q}[x]$ of degree n
$h:=x, f_{\text {orig }}:=f$
for i from 1 to n :

$$
\begin{aligned}
& h:=h^{q} \bmod f_{\text {orig }} \\
& g_{i}:=\operatorname{gcd}(h-x, f) \\
& f:=f / g_{i}
\end{aligned}
$$

return g_{1}, \ldots, g_{n}

1.2.4 Analysis

Assuming naive multiplication, the first operation in the loop uses $O\left(n^{2} \log q\right)$ field operations and the last two operations in the loop use $O\left(n^{2}\right)$ field operations. Thus, the total cost is $O\left(n^{3} \log q\right)$ field operations. With fast multiplication and fast gcd algorithms this cost can be brought down to $O^{\sim}\left(n^{2} \log q\right)$.

1.3 Equal-degreee factorization

Next, we consider the problem of splitting a polynomial whose irreducible factors are all of the same degree (like g_{i} from above). That is, given a squarefree monic $f \in \mathbb{F}_{q}[x]$ of degree n and the knowledge that all of f 's irreducible factors have degree d we want to decompose f as $f=g_{1} \cdots g_{k}$ where $k=n / d$. In fact, it will be sufficient to develop an algorithm that can find any nontrivial factorization $f=g_{1} \cdot g_{2}$ with neither g_{1} or g_{2} a constant polynomial, because then the problem is split into two smaller subproblems and we can run our splitting algorithm on both g_{1} and g_{2} separately.

In this section we assume that q is odd, though a similar algorithm can be developed for the even case.

1.3.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem says that solving a modular equation $\bmod n=p_{1} \cdots p_{k}$ (where the p_{i} are distinct primes) is equivalent to solving the equation mod each prime p_{i} individually:

$$
f(x) \equiv 0 \quad(\bmod n) \Longleftrightarrow\left\{\begin{array}{cc}
f(x) \equiv 0 & \left(\bmod p_{1}\right) \\
\vdots & \\
f(x) \equiv 0 & \left(\bmod p_{k}\right)
\end{array}\right\}
$$

It also provides an efficiently-computable way to take a solution of the system of equations on the right-hand side and translate it into a solution on the left-hand side. For example, if $x \equiv a_{i}$
$\left(\bmod p_{i}\right)$ for $1 \leq i \leq k$, it tells you how to find an $x \in \mathbb{Z}_{n}$ so that $x \equiv a(\bmod n)$. In ring theoretic terms this means that the ring \mathbb{Z}_{n} is equivalent to the "direct product" of the rings $\mathbb{Z}_{p_{i}}$:

$$
\begin{aligned}
& \mathbb{Z}_{n} \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{k}} \\
& \quad \text { via the mapping } \\
& \quad x \mapsto\left(x \bmod p_{1}, x \bmod p_{2}, \ldots, x \bmod p_{k}\right)
\end{aligned}
$$

In fact, this idea applies to more than the integers modulo n; the exact same relationship holds for polynomials modulo $f=g_{1} \cdots g_{k}$ where the g_{i} are distinct irreducible polynomials. Just like \mathbb{Z}_{n} is the set of integers with arithmetic performed modulo n (this is also denoted by $\mathbb{Z} / n \mathbb{Z}$ or $\mathbb{Z} /(n)$), the set of polynomials $\mathbb{F}_{q}[x]$ with arithmetic performed modulo f is denoted by $\mathbb{F}_{q}[x] /(f)$. Then the Chinese Remainder Theorem for polynomials says that

$$
\begin{gathered}
\mathbb{F}_{q}[x] /(f) \cong \mathbb{F}_{q}[x] /\left(g_{1}\right) \times \mathbb{F}_{q}[x] /\left(g_{2}\right) \times \cdots \times \mathbb{F}_{q}[x] /\left(g_{k}\right) \\
\quad \text { via the mapping } \\
f \mapsto\left(f \bmod g_{1}, f \bmod g_{2}, \ldots, f \bmod g_{k}\right) .
\end{gathered}
$$

The structure of $\mathbb{F}_{q}[x] /(g)$ What does the arithmetic of $\mathbb{F}_{q}[x] /(g)$ look like when g is an irreducible polynomial? In fact, every nonzero polynomial in $h \in \mathbb{F}_{q}[x] /(g)$ has an inverse h^{-1} which can be computed by solving $h \alpha=1$ for α in $\mathbb{F}_{q}[x] /(g)$, i.e., solving $h \alpha+g \beta=1$ for $\alpha, \beta \in \mathbb{F}_{q}[x]$. We know how to solve this using the extended Euclidean algorithm on $h, g \in \mathbb{F}_{q}[x]$, assuming that h and g are coprime. (Which they are, since g is irreducible and $\operatorname{deg}(h)<\operatorname{deg}(g)$.)
Thus, $\mathbb{F}_{q}[x] /(g)$ is a field! When g has degree d, the field has the q^{d} elements $\left\{\sum_{i<d} c_{i} x^{i}\right.$: $\left.c_{0}, \ldots, c_{d-1} \in \mathbb{F}_{q}\right\}$.

1.3.2 Fermat's Little Theorem in a field

Fermat's Little Theorem also applies to any finite field \mathbb{F}; if \mathbb{F} has q^{d} elements and $a \in \mathbb{F}$ then $a^{q^{d}-1}=1$. The original version of Fermat's Little Theorem is recovered when q is prime and $d=1$ (so $\mathbb{F}=\mathbb{Z}_{p}$).
Moreover, since the nonzero elements of any finite field form a cyclic group, what we called the "square root" of Fermat's Little Theorem also holds in any finite field. That is, if \mathbb{F} has q^{d} elements and $a \in \mathbb{F}$ then $a^{\left(q^{d}-1\right) / 2}= \pm 1$. (This is where we assume that q is odd, so that $\left(q^{d}-1\right) / 2$ is an integer.)

1.3.3 Applying Fermat's Little Theorem

Now let's go back to the problem of factoring $f \in \mathbb{F}_{q}[x]$ of degree n where we know that all of its irreducible factors g_{i} are of the same degree d. Suppose we choose a random $\alpha \in \mathbb{F}_{q}[x]$ of degree less than n. If we compute $\alpha^{q^{d}-1} \bmod f$ what will we get? Note that Fermat's Little Theorem doesn't apply directly here, since f is not irreducible and hence $\mathbb{F}_{q}[x] /(f)$ is not a field. However, the Chinese Remainder Theorem allows us to write $\mathbb{F}_{q}[x] /(f)$ as a direct product of fields where Fermat's Little Theorem does apply.
By the Chinese Remainder Theorem, computing $\alpha^{q^{d}-1} \bmod f$ is essentially equivalent to computing

$$
\left(\alpha^{q^{d}-1} \bmod g_{1}, \ldots, \alpha^{q^{d}-1} \bmod g_{k}\right),
$$

and because each g_{i} is specifically known to be irreducible and of degree d, by Fermat's Little Theorem the above vector of residues is $(1,1, \ldots, 1)$, at least assuming that α is coprime to each g_{i}. Since α was chosen randomly, it is likely α is coprime to each g_{i}. However, if this is not the case then things are even easier, since a factor of f can be recovered by $\operatorname{gcd}(\alpha, f)$. Thus, we can assume that α and each g_{i} are coprime.
Thus, assuming α is coprime to f we do in fact have $\alpha^{p^{d}-1}=1$ in $\mathbb{F}_{q}[x] /(f)$, because $\alpha^{p^{d}-1}=1$ in each of $\mathbb{F}_{q}[x] /\left(g_{i}\right)$ for $1 \leq i \leq k$.

1.3.4 Splitting f

We saw above that $\alpha^{p^{d}-1}=1$ in $\mathbb{F}_{q}[x] /(f)$. What about the square root $\alpha^{\left(p^{d}-1\right) / 2}$ in $\mathbb{F}_{q}[x] /(f)$? Note that this is not necessarily ± 1, since recall that $\mathbb{F}_{q}[x] /(f)$ is not a field. In general rings (that are not fields), the identity 1 may have more square roots than just 1 and -1 .

Again, we can use the Chinese Remainder Theorem to evaluate what $\alpha^{\left(p^{d}-1\right) / 2} \bmod f$ is. This is essentially equivalent to computing

$$
\left(\alpha^{\left(q^{d}-1\right) / 2} \bmod g_{1}, \ldots, \alpha^{\left(q^{d}-1\right) / 2} \bmod g_{k}\right),
$$

which by the square root of Fermat's Little Theorem is a vector whose entries are all ± 1. If by chance this vector is $(-1,-1, \ldots,-1)$ then it will be the case that $\alpha^{\left(q^{d}-1\right) / 2}=-1$ in $\mathbb{F}_{q}[x] /(f)$. However, this is quite unlikely, especially if k is large. In fact, since α was chosen randomly, we expect that 50% of the entries of the vector will be 1 and 50% of the entries of the vector will be -1 . If there is at least one 1 and -1 entry in the vector, then $\alpha^{\left(q^{d}-1\right) / 2} \neq \pm 1$ in $\mathbb{F}_{q}[x] /(f)$.
The scenario when $\alpha^{\left(q^{d}-1\right) / 2} \bmod f \neq \pm 1$ is the one that is beneficial, because that means that $\alpha^{\left(q^{d}-1\right) / 2} \bmod g_{i}=1$ for some i and $\alpha^{\left(q^{d}-1\right) / 2} \bmod g_{j}=-1$ for some j. In other words, we have that g_{j} divides $\alpha^{\left(q^{d}-1\right) / 2}-1$ and g_{i} does not divide $\alpha^{\left(q^{d}-1\right) / 2}-1$. Thus, $\operatorname{gcd}\left(\alpha^{\left(q^{d}-1\right) / 2}-1, f\right)$ reveals a nontrivial factor of f, since it definitely includes g_{j} but not g_{i}.

1.3.5 Psuedocode

Input: Squarefree and monic $f \in \mathbb{F}_{q}[x]$ of degree n and d, the degree of all irreducible factors of f Choose $\alpha \in \mathbb{F}_{q}[x]$ randomly of degree less than n.
If $g:=\operatorname{gcd}(\alpha, f)$ is nontrivial, then f is split by $f=g \cdot(f / g)$.
Compute $A:=\alpha^{\left(q^{d}-1\right) / 2} \bmod f$.
If $g:=\operatorname{gcd}(A-1, f)$ is nontrivial, then f is split by $f=g \cdot(f / g)$.
If g is trivial, then repeat the algorithm with another random α.

1.3.6 Analysis

The running time of the algorithm is dominated by the computation of A, which using repeated squaring requires $O\left(d(\log q) n^{2}\right)$ operations in \mathbb{F}_{q}. How many times do we expect to get unlucky, though? In the worst case f has exactly two irreducible factors, i.e., $d=n / 2$. In this case we expect 50% of the time A will be 1 or -1 which gives a trivial gcd. However, 50% of the time A
will not be ± 1 and as we saw above this results in a nontrivial g being found. Thus, even in the worst case we do not expect to have to try too many random α before a factor is found.

In order to completely factor f, the above algorithm must be called recursively at most n / d times, one for each factor of f. In the worst case, every time a factor g is recovered it would be of degree exactly d, meaning that g itself is irreducible and only a single recursive call needs to be made on f / g, a polynomial of degree $n-d$. In such a case the total cost of splitting f completely would be n / d times $O\left(d n^{2} \log q\right)$, which is $O\left(n^{3} \log q\right)$.

However, since α was chosen randomly, it is expected that g will contain about half of the irreducible factors of f and f / g will contain the other half of the irreducible factors. In this case, there will be two recursive calls and each will be of size roughly $n / 2$. In such a case the depth of the recursion is expected to be logarithmic in n / d, not linear in n / d. Thus, the expected running time of the algorithm is $O\left(d n^{2} \log (q) \log (n / d)\right)$ field operations.

1.4 Factoring Squarefull Polynomials

So far, we've assumed that the input polynomial $f \in \mathbb{F}_{q}[x]$ to factor is squarefree. In fact, everything in the algorithm we described works if f is "squarefull" (meaning that it is divisible by an irreducible polynomial more than once) but we need to be a bit careful.

After the distinct-degree factorization step, we will have computed g_{1}, \ldots, g_{n} which are each squarefree polynomials because $x^{q^{d}}-x$ is a squarefree polynomial. However, the product of the g_{i} will not equal f exactly when f is squarefull. Instead, we will have $f=S \cdot \prod_{i} g_{i}$ where S is the duplicated factors of f.

The input to the equal-degree factorization step will be the g_{i}, so nothing changes in the equaldegree step which will still factor the g_{i} into their irreducible components.

At the end, we take each irreducible factor of the g_{i} and see if divides S (and if so, how many times). This can be done with repeated quotient and remainder. Since the polynomials involved all have degree at most n this will be less than the cost of the other parts of the algorithm.

1.4.1 Pseudocode for a Complete Factoring Algorithm

Input: Monic $f \in \mathbb{F}_{q}[x]$ of degree n
$h:=x, f_{\text {orig }}:=f$
for i from 1 to n :
$h:=h^{q} \bmod f_{\text {orig }}$
$g:=\operatorname{gcd}(h-x, f)$
$f:=f / g$
Apply equal-degree factorization on g to write $g=g_{1} \cdots g_{k}$
Add g_{1}, \ldots, g_{k} to the list of irreducible factors
for j from 1 to k :
while g_{j} divides f :

$$
f:=f / g_{j}
$$

Add another copy of g_{j} to the list of irreducible factors
Ouput the list of irreducible factors of f

1.4.2 Analysis

The bottleneck of the outer loop in the complete factoring algorithm is the cost of computing the equal-degree factorization $g=g_{1} \cdots g_{k}$. During step i of the outer loop say that the degree of g is m_{i}. Then the equal-degree factorization on step i will produce the m_{i} / i factors $g_{1}, \ldots, g_{m_{i} / i}$ and cost of finding these will be an expected $O\left(i n^{2} \log (q) \log \left(m_{i} / i\right)\right)$ field operations.
Note that we have

$$
i \log \left(m_{i} / i\right)=m_{i} \frac{\log \left(m_{i} / i\right)}{m_{i} / i} \leq m_{i}, \quad \text { since } \frac{\log x}{x} \leq 1 .
$$

Thus iteration i of the loop takes an expected $O\left(m_{i} n^{2} \log (q)\right)$ field operations. Because $\sum_{i=1}^{n} m_{i} \leq n$ the total expected running time of the entire algorithm is $\sum_{i=1}^{n} O\left(m_{i} n^{2} \log (q)\right)=O\left(n^{3} \log (q)\right)$ field operations.

1.5 Factoring Polynomials in $\mathbb{Z}[x]$

Lastly, we will see how factoring polynomials in $\mathbb{F}_{q}[x]$ can also be used as a basis for factoring polynomials in $\mathbb{Z}[x]$. The algorithm we present will have exponential running time, but with some additional cleverness can be made to run in polynomial time.

First, note that to factor polynomials in $\mathbb{Z}[x]$ actually requires the ability to factor integers. For example, suppose all coefficients of your input polynomial $f \in \mathbb{Z}[x]$ are divisible by the same number N. Then in order to write f as a product of factors where each factor cannot be factored any further requires N to also be factored. One workaround to this is to consider the factorization problem over $\mathbb{Q}[x]$ instead of $\mathbb{Z}[x]$, since over \mathbb{Q} every nonzero constant is invertible and cannot be factored further. If we ignore the issue of factoring integer constants, then the factoring problem in $\mathbb{Q}[x]$ is equivalent to the factoring problem in $\mathbb{Z}[x]$. We will sidestep the issue by just assuming that $f \in \mathbb{Z}[x]$ is monic.

1.5.1 Reducing $f \bmod p$

The coefficients of the polynomial $f \in \mathbb{Z}[x]$ can be reduced modulo p to form a polynomial $\bar{f} \in$ $\mathbb{Z}_{p}[x]$. Our idea will be to compute \bar{f} for large enough p, then factor \bar{f} over $\mathbb{Z}_{p}[x]$. This will provide a factorization

$$
\begin{equation*}
\bar{f}=g_{1} \cdots g_{k} \tag{**}
\end{equation*}
$$

for irreducible polynomials $\bar{g}_{i} \in \mathbb{Z}_{p}[x]$. If a polynomial is irreducible in $\mathbb{Z}_{p}[x]$ this definitely implies it is irreducible in $\mathbb{Z}[x]$ (because equality in \mathbb{Z} implies equality in \mathbb{Z}_{p}). However, the converse does not hold: a polynomial might factor farther over \mathbb{Z}_{p} than it does over \mathbb{Z}.

Note that if p is chosen large enough, one can recover a polynomial α from its reduction $\bar{\alpha}$ modulo p. For example, suppose that you know the coefficients of α are all at most 5 in absolute value and the bar denotes reduction modulo $p=11$. If $\bar{\alpha}=x^{3}-5 x^{2}+5 x-2$ then the coefficients of α and $\bar{\alpha}$ must be the same, because any other way of "lifting" the coefficients of \mathbb{Z}_{p} to \mathbb{Z} would introduce
a coefficient c with $|c| \geq 6$. If the polynomial α we want to recover has a maximum coefficient of absolute value N, then we choose $p>2 N$. Using the "symmetric range" $\{-(p-1) / 2, \ldots,(p-$ 1) $/ 2\}$ of residues $\bmod p$, we can capture all of $\alpha \prime$ s coefficients exactly $\bmod p$, and therefore will be able to recover the α from $\bar{\alpha}$.

So by taking p large enough we will be able to recover the coefficients of the factors of f from their modular reductions-if we can compute their modular reductions. Say f_{1} is an irreducible factor of f. Since $f \bmod p$ can only factor farther than f, it must be the case that some product of the $g_{i} s$ in $(* *)$ must combine in order to give f_{1}, i.e., there is a set $S \subseteq\{1, \ldots, k\}$ such that

$$
f_{1}=\prod_{i \in S} g_{i} .
$$

If we can find the set S then we would be able to compute the product f_{1} and we can easily test that f_{1} is indeed a true factor of f by checking that $f \bmod f_{1}=0$. The problem with this approach is that there seems no easy way to find the set S. Of course, we can try all possible subsets $S \subseteq\{1, \ldots, k\}$ and figure out which ones yield true factors in $\mathbb{Z}[x]$, not $\mathbb{Z}_{p}[x]$. Of course, this requires exponential time in the number of factors.

1.5.2 Squarefree Factorization

Incidentally, it is easy to find the squarefree part of a polynomial in $\mathbb{Z}[x]$ or $\mathbb{Q}[x]$ (or more generally any field \mathbb{F} where $1+1+\cdots+1 \neq 0$ for arbitrary many additions). This is because in $\mathbb{F}[x]$ a factor divides $f=\sum_{i \geq 0} a_{i} x^{i} \in \mathbb{F}[x]$ more than once if and only if it divides the derivative of f, defined by $f^{\prime}:=\sum_{i \geq 1} i a_{i} x^{i-1}$.
Thus, the squarefree part of f can be computed by $f / \operatorname{gcd}\left(f, f^{\prime}\right)$. You have to be careful over a finite field, as the precondition on the field isn't met (in that case $1+1+\cdots+1=0$ when there are p ones) and it is possible that $f^{\prime}=0$ even when $f \neq 0$. Though even in a finite field it still is the case that $\operatorname{gcd}\left(f, f^{\prime}\right)=1$ does imply that f is squarefree.

1.5.3 Pseudocode

Input: A squarefree and monic $f \in \mathbb{Z}[x]$ of degree n and maximum coefficient in absolute value of A

Let $p \in[2 B, 4 B)$ be a random prime where $B:=2^{n} A \sqrt{n+1}$
Factor $\bar{f} \in \mathbb{Z}_{p}[x]$ as $g_{1} \cdots g_{k}$ for irreducible $g_{i}(\bmod p)$ and write the g_{i} as polynomials with coefficients absolutely bounded by $p / 2$
$T:=\{1, \ldots, k\}$
for all $S \subseteq T$, starting with the smallest S :
$g:=\prod_{i \in S} g_{i}$
if $f \bmod g=0$ then

$$
f:=f / g
$$

$$
T:=T \backslash S
$$

add g to the list of irreducible factors
Output the list of irreducible factors of f

1.5.4 Analysis

Unfortunately, the loop may run exponentially many times, since there are 2^{k} subsets of T. There is a better method for determining which g_{i} combine together to form actual irreducible factors of f, but it involves more mathematical machinery. In particular, an algorithm of Lenstra, Lenstra, and Lovász from 1982 is able to solve the factoring problem in $\mathbb{Q}[x]$ in polynomial time in $\operatorname{deg}(f)=n$ and in the size of the coefficients of f. At the time this was somewhat surprising, even to the discoverers. Their method is even totally deterministic, which at first seems paradoxical since it relies on the $\mathbb{Z}_{p}[x]$ factoring method that uses randomness. This is possible because they are able to show that they can find a prime p in polynomial time (without relying on randomness) for which the $\mathbb{Z}_{p}[x]$ factoring algorithm is guaranteed to find the factorization in $\mathbb{Z}_{p}[x]$.

