
Computational Mathematics: Handout 12

Curtis Bright

March 7, 2024

1 Factoring Polynomials

In this handout we cover how to factor polynomials—in particular, we give a polynomial time
algorithm for factoring polynomials whose coefficients are in a finite field. That is, given an f ∈
Fq[x], write it as the decomposition

f = f1 · f2 · · · fn

where f1, . . ., fn are irreducible polynomials. An irreducible polynomial is one that cannot be
written as a nontrivial product, i.e., f is irreducible exactly when f = gh implies at least one of
g and h are a constant polynomial. Because the coefficients are from a field, all of the leading
coefficients of the polynomials fi are invertible. Thus, one can write the decomposition as

f = c f1 · f2 · · · fn (∗)

where c ∈ Fq and all the fi are monic (have a leading coefficient of 1). We consider the factorization
problem as finding the decomposition (∗) given f . By dividing both sides by c we also make the
leading coefficient on the left-hand side also 1. Thus, without loss of generality we will assume
that the f to factor is monic.

Throughout this handout the reader can think of Fq as being Zp (i.e., the field of residues modulo
a prime p), as Zp is the simplest kind of finite field. However, the algorithms we discuss will also
work in general finite fields Fq.

1.1 Roadmap

We will break the problem of factoring f ∈ Fq[x] into various special cases. One important special
case is to handle the case when f is squarefree, meaning that in the decomposition f = ∏i fi all
of the fi are distinct. That is, a polynomial is squarefree when it is not divisible by the square
any polynomial (except constant polynomials). For example, f = (x + 1)2 is not squarefree and
f = (x + 1)(x − 1) is squarefree over any field Zp with p > 2.

A second special case of the factoring problem is to f into distinct-degree factors, i.e., write f as
f = g1 · · · gn where gi is the product of all irreducible factors of degree i. For example, if f =
(x + 1)2(x − 1)(x2 + 3)(x3 + x + 1) ∈ F5[x] then g1 = (x + 1)2(x − 1), g2 = x2 + 3, g3 = x3 + x + 1,
and g4 = · · · = g8 = 1.

The third special case is to factor the gi that appear in the distinct-degree factorization. That is,
given a gi ∈ Fq[x] of degree d whose irreducible factors are all guaranteed to be of a known
degree i (and hence there must be d/i of them), find all d/i irreducible factors gi = h1 · · · hd/i. For
example, given g1 = x3 + x2 − x − 1 ∈ F5[x] (which is a product of only linear factors), find its
decomposition into linear factors g1 = (x + 1)2(x − 1).

1

1.2 Distinct-degree Factorization

First, we consider the problem of taking a squarefree monic f ∈ Fq[x] of degree n and writing it as
the product g1 · · · gn where gi is the product of the irreducible polynomials of degree i dividing f .
Our algorithm for doing this will be based on a generalization of Fermat’s little theorem in Fq[x].

1.2.1 Fermat’s Little Theorem

Recall Fermat’s little theorem says if p is prime then ap ≡ a (mod p), i.e., all a ∈ Zp are roots of
the polynomial xp − x ∈ Zp[x]. In fact, over general finite fields Fq one still has that all a ∈ Fq are
roots of xq − x. Thus, Fermat’s little theorem can equivalently be written as

xq − x = ∏
a∈Fq

(x − a).

Thus, given f one can compute g1, the product of all linear factors of f , via g1 := gcd(f , xq − x).

Generalizing this, one can also show that

xq2 − x = ∏
α∈Fq[x], irred.

deg(α)≤2

α(x).

In follows that once the linear factors of f have been removed (by dividing by g1) one can find g2,
all the quadratic factors of f /g1, via g2 := gcd(f /g1, xq2 − x).

This process can be generalized; the proper generalization of Fermat’s last theorem that enables
finding all irreducible factors of degree d ≥ 1 is

xqd − x = ∏
α∈Fq[x], irred.

deg(α)|d

α(x).

Once all factors of f less than degree d have been removed from f (via f · ∏i<d g−1
i) all irreducible

factors of degree exactly d is found with gd := gcd(f · ∏i<d g−1
i , xqd − x).

1.2.2 Efficiency

How efficient would this be? If it was computed directly it would be an issue, since it would
require O(nqd) field operations for computing gcd(f , xqd − x) where deg(f) = n. Since d = Θ(n)
in the worst case, computing this gcd would take exponential time in n. Thus, this proposed
approach is seemingly totally infeasible.

A simple observation reduces the exponential running time to a polynomial one. Note that when
computing gcd(f , xqd − x) the polynomial does not need to be constructed explicitly; it is enough
to construct the polynomial xqd − x mod f which has degree at most n. At first this might not seem
useful, since computing xqd − x mod f directly would also require exponential time.

However, we can use repeated squaring in order to compute the modular exponentiation xqd
mod

f efficiently. Also, since
xqd

mod f = (xqd−1
mod f)q mod f

2

and xqd−1
mod f was used on the previous iteration (in order to extract the factors of d − 1 from

f). Thus, on the ith iteration one can save xqi
mod f and reuse it on iteration i + 1 without needed

to recompute it.

1.2.3 Pseudocode

Input: Squarefree and monic f ∈ Fq[x] of degree n

h := x, forig := f

for i from 1 to n:

h := hq mod forig

gi := gcd(h − x, f)

f := f /gi

return g1, . . ., gn

1.2.4 Analysis

Assuming naive multiplication, the first operation in the loop uses O(n2 log q) field operations and
the last two operations in the loop use O(n2) field operations. Thus, the total cost is O(n3 log q)
field operations. With fast multiplication and fast gcd algorithms this cost can be brought down
to O∼(n2 log q).

1.3 Equal-degreee factorization

Next, we consider the problem of splitting a polynomial whose irreducible factors are all of the
same degree (like gi from above). That is, given a squarefree monic f ∈ Fq[x] of degree n and the
knowledge that all of f ’s irreducible factors have degree d we want to decompose f as f = g1 · · · gk
where k = n/d. In fact, it will be sufficient to develop an algorithm that can find any nontrivial
factorization f = g1 · g2 with neither g1 or g2 a constant polynomial, because then the problem
is split into two smaller subproblems and we can run our splitting algorithm on both g1 and g2
separately.

In this section we assume that q is odd, though a similar algorithm can be developed for the even
case.

1.3.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem says that solving a modular equation mod n = p1 · · · pk (where
the pi are distinct primes) is equivalent to solving the equation mod each prime pi individually:

f (x) ≡ 0 (mod n) ⇐⇒


f (x) ≡ 0 (mod p1)

...
f (x) ≡ 0 (mod pk)

 .

It also provides an efficiently-computable way to take a solution of the system of equations on
the right-hand side and translate it into a solution on the left-hand side. For example, if x ≡ ai

3

(mod pi) for 1 ≤ i ≤ k, it tells you how to find an x ∈ Zn so that x ≡ a (mod n). In ring theoretic
terms this means that the ring Zn is equivalent to the “direct product” of the rings Zpi :

Zn ∼= Zp1 × Zp2 × · · · × Zpk

via the mapping
x 7→ (x mod p1, x mod p2, . . . , x mod pk)

In fact, this idea applies to more than the integers modulo n; the exact same relationship holds for
polynomials modulo f = g1 · · · gk where the gi are distinct irreducible polynomials. Just like Zn is
the set of integers with arithmetic performed modulo n (this is also denoted by Z/nZ or Z/(n)),
the set of polynomials Fq[x] with arithmetic performed modulo f is denoted by Fq[x]/(f). Then
the Chinese Remainder Theorem for polynomials says that

Fq[x]/(f) ∼= Fq[x]/(g1)× Fq[x]/(g2)× · · · × Fq[x]/(gk)

via the mapping
f 7→ (f mod g1, f mod g2, . . . , f mod gk).

The structure of Fq[x]/(g) What does the arithmetic of Fq[x]/(g) look like when g is an irre-
ducible polynomial? In fact, every nonzero polynomial in h ∈ Fq[x]/(g) has an inverse h−1 which
can be computed by solving hα = 1 for α in Fq[x]/(g), i.e., solving hα + gβ = 1 for α, β ∈ Fq[x].
We know how to solve this using the extended Euclidean algorithm on h, g ∈ Fq[x], assuming that
h and g are coprime. (Which they are, since g is irreducible and deg(h) < deg(g).)

Thus, Fq[x]/(g) is a field! When g has degree d, the field has the qd elements
{

∑i<d cixi :
c0, . . . , cd−1 ∈ Fq

}
.

1.3.2 Fermat’s Little Theorem in a field

Fermat’s Little Theorem also applies to any finite field F; if F has qd elements and a ∈ F then
aqd−1 = 1. The original version of Fermat’s Little Theorem is recovered when q is prime and d = 1
(so F = Zp).

Moreover, since the nonzero elements of any finite field form a cyclic group, what we called the
“square root” of Fermat’s Little Theorem also holds in any finite field. That is, if F has qd elements
and a ∈ F then a(q

d−1)/2 = ±1. (This is where we assume that q is odd, so that (qd − 1)/2 is an
integer.)

1.3.3 Applying Fermat’s Little Theorem

Now let’s go back to the problem of factoring f ∈ Fq[x] of degree n where we know that all of its
irreducible factors gi are of the same degree d. Suppose we choose a random α ∈ Fq[x] of degree
less than n. If we compute αqd−1 mod f what will we get? Note that Fermat’s Little Theorem
doesn’t apply directly here, since f is not irreducible and hence Fq[x]/(f) is not a field. However,
the Chinese Remainder Theorem allows us to write Fq[x]/(f) as a direct product of fields where
Fermat’s Little Theorem does apply.

By the Chinese Remainder Theorem, computing αqd−1 mod f is essentially equivalent to comput-
ing

(αqd−1 mod g1, . . . , αqd−1 mod gk),

4

and because each gi is specifically known to be irreducible and of degree d, by Fermat’s Little
Theorem the above vector of residues is (1, 1, . . . , 1), at least assuming that α is coprime to each gi.
Since α was chosen randomly, it is likely α is coprime to each gi. However, if this is not the case
then things are even easier, since a factor of f can be recovered by gcd(α, f). Thus, we can assume
that α and each gi are coprime.

Thus, assuming α is coprime to f we do in fact have αpd−1 = 1 in Fq[x]/(f), because αpd−1 = 1 in
each of Fq[x]/(gi) for 1 ≤ i ≤ k.

1.3.4 Splitting f

We saw above that αpd−1 = 1 in Fq[x]/(f). What about the square root α(pd−1)/2 in Fq[x]/(f)?
Note that this is not necessarily ±1, since recall that Fq[x]/(f) is not a field. In general rings (that
are not fields), the identity 1 may have more square roots than just 1 and −1.

Again, we can use the Chinese Remainder Theorem to evaluate what α(pd−1)/2 mod f is. This is
essentially equivalent to computing

(α(qd−1)/2 mod g1, . . . , α(qd−1)/2 mod gk),

which by the square root of Fermat’s Little Theorem is a vector whose entries are all ±1. If by
chance this vector is (−1,−1, . . . ,−1) then it will be the case that α(qd−1)/2 = −1 in Fq[x]/(f).
However, this is quite unlikely, especially if k is large. In fact, since α was chosen randomly, we
expect that 50% of the entries of the vector will be 1 and 50% of the entries of the vector will be
−1. If there is at least one 1 and −1 entry in the vector, then α(qd−1)/2 ̸= ±1 in Fq[x]/(f).

The scenario when α(qd−1)/2 mod f ̸= ±1 is the one that is beneficial, because that means that
α(qd−1)/2 mod gi = 1 for some i and α(qd−1)/2 mod gj = −1 for some j. In other words, we have
that gj divides α(qd−1)/2 − 1 and gi does not divide α(qd−1)/2 − 1. Thus, gcd(α(qd−1)/2 − 1, f) reveals
a nontrivial factor of f , since it definitely includes gj but not gi.

1.3.5 Psuedocode

Input: Squarefree and monic f ∈ Fq[x] of degree n and d, the degree of all irreducible factors of f

Choose α ∈ Fq[x] randomly of degree less than n.

If g := gcd(α, f) is nontrivial, then f is split by f = g · (f /g).

Compute A := α(qd−1)/2 mod f .

If g := gcd(A − 1, f) is nontrivial, then f is split by f = g · (f /g).

If g is trivial, then repeat the algorithm with another random α.

1.3.6 Analysis

The running time of the algorithm is dominated by the computation of A, which using repeated
squaring requires O(d(log q)n2) operations in Fq. How many times do we expect to get unlucky,
though? In the worst case f has exactly two irreducible factors, i.e., d = n/2. In this case we
expect 50% of the time A will be 1 or −1 which gives a trivial gcd. However, 50% of the time A

5

will not be ±1 and as we saw above this results in a nontrivial g being found. Thus, even in the
worst case we do not expect to have to try too many random α before a factor is found.

In order to completely factor f , the above algorithm must be called recursively at most n/d times,
one for each factor of f . In the worst case, every time a factor g is recovered it would be of degree
exactly d, meaning that g itself is irreducible and only a single recursive call needs to be made on
f /g, a polynomial of degree n − d. In such a case the total cost of splitting f completely would be
n/d times O(dn2 log q), which is O(n3 log q).

However, since α was chosen randomly, it is expected that g will contain about half of the irre-
ducible factors of f and f /g will contain the other half of the irreducible factors. In this case, there
will be two recursive calls and each will be of size roughly n/2. In such a case the depth of the
recursion is expected to be logarithmic in n/d, not linear in n/d. Thus, the expected running time
of the algorithm is O(dn2 log(q) log(n/d)) field operations.

1.4 Factoring Squarefull Polynomials

So far, we’ve assumed that the input polynomial f ∈ Fq[x] to factor is squarefree. In fact, every-
thing in the algorithm we described works if f is “squarefull” (meaning that it is divisible by an
irreducible polynomial more than once) but we need to be a bit careful.

After the distinct-degree factorization step, we will have computed g1, . . ., gn which are each
squarefree polynomials because xqd − x is a squarefree polynomial. However, the product of the
gi will not equal f exactly when f is squarefull. Instead, we will have f = S · ∏i gi where S is a
product of the duplicated factors of f .

The input to the equal-degree factorization step will be the gi, so nothing changes in the equal-
degree step which will still factor the gi into their irreducible components.

At the end, we take each irreducible factor of the gi and see if divides S (and if so, how many
times). This can be done with repeated quotient and remainder. Since the polynomials involved
all have degree at most n this will be less than the cost of the other parts of the algorithm.

1.4.1 Pseudocode for a Complete Factoring Algorithm

Input: Monic f ∈ Fq[x] of degree n

h := x, forig := f

for i from 1 to n:

h := hq mod forig

g := gcd(h − x, f)

f := f /g

Apply equal-degree factorization on g to write g = g1 · · · gk

Add g1, . . ., gk to the list of irreducible factors

for j from 1 to k:

while gj divides f :

6

f := f /gj

Add another copy of gj to the list of irreducible factors

Ouput the list of irreducible factors of f

1.4.2 Analysis

The bottleneck of the outer loop in the complete factoring algorithm is the cost of computing the
equal-degree factorization g = g1 · · · gk. During step i of the outer loop say that the degree of g
is mi. Then the equal-degree factorization on step i will produce the mi/i factors g1, . . ., gmi/i and
cost of finding these will be an expected O(in2 log(q) log(mi/i)) field operations.

Note that we have

i log(mi/i) = mi
log(mi/i)

mi/i
≤ mi, since

log x
x

≤ 1.

Thus iteration i of the loop takes an expected O(min2 log(q)) field operations. Because ∑n
i=1 mi ≤ n

the total expected running time of the entire algorithm is ∑n
i=1 O(min2 log(q)) = O(n3 log(q)) field

operations.

1.5 Factoring Polynomials in Z[x]

Lastly, we will see how factoring polynomials in Fq[x] can also be used as a basis for factoring
polynomials in Z[x]. The algorithm we present will have exponential running time, but with
some additional cleverness can be made to run in polynomial time.

First, note that to factor polynomials in Z[x] actually requires the ability to factor integers. For
example, suppose all coefficients of your input polynomial f ∈ Z[x] are divisible by the same
number N. Then in order to write f as a product of factors where each factor cannot be factored
any further requires N to also be factored. One workaround to this is to consider the factorization
problem over Q[x] instead of Z[x], since over Q every nonzero constant is invertible and cannot be
factored further. If we ignore the issue of factoring integer constants, then the factoring problem
in Q[x] is equivalent to the factoring problem in Z[x]. We will sidestep the issue by just assuming
that f ∈ Z[x] is monic.

1.5.1 Reducing f mod p

The coefficients of the polynomial f ∈ Z[x] can be reduced modulo p to form a polynomial f̄ ∈
Zp[x]. Our idea will be to compute f̄ for large enough p, then factor f̄ over Zp[x]. This will
provide a factorization

f̄ = g1 · · · gk (∗∗)

for irreducible polynomials ḡi ∈ Zp[x]. If a polynomial is irreducible in Zp[x] this definitely
implies it is irreducible in Z[x] (because equality in Z implies equality in Zp). However, the
converse does not hold: a polynomial might factor farther over Zp than it does over Z.

Note that if p is chosen large enough, one can recover a polynomial α from its reduction ᾱ modulo
p. For example, suppose that you know the coefficients of α are all at most 5 in absolute value and
the bar denotes reduction modulo p = 11. If ᾱ = x3 − 5x2 + 5x − 2 then the coefficients of α and ᾱ
must be the same, because any other way of “lifting” the coefficients of Zp to Z would introduce

7

a coefficient c with |c| ≥ 6. If the polynomial α we want to recover has a maximum coefficient of
absolute value N, then we choose p > 2N. Using the “symmetric range” {−(p − 1)/2, . . . , (p −
1)/2} of residues mod p, we can capture all of α’s coefficients exactly mod p, and therefore will be
able to recover the α from ᾱ.

So by taking p large enough we will be able to recover the coefficients of the factors of f from their
modular reductions—if we can compute their modular reductions. Say f1 is an irreducible factor
of f . Since f mod p can only factor farther than f , it must be the case that some product of the gis
in (∗∗) must combine in order to give f1, i.e., there is a set S ⊆ {1, . . . , k} such that

f1 = ∏
i∈S

gi.

If we can find the set S then we would be able to compute the product f1 and we can easily
test that f1 is indeed a true factor of f by checking that f mod f1 = 0. The problem with this
approach is that there seems no easy way to find the set S. Of course, we can try all possible
subsets S ⊆ {1, . . . , k} and figure out which ones yield true factors in Z[x], not Zp[x]. Of course,
this requires exponential time in the number of factors.

1.5.2 Squarefree Factorization

Incidentally, it is easy to find the squarefree part of a polynomial in Z[x] or Q[x] (or more generally
any field F where 1+ 1+ · · ·+ 1 ̸= 0 for arbitrary many additions). This is because in F[x] a factor
divides f = ∑i≥0 aixi ∈ F[x] more than once if and only if it divides the derivative of f , defined
by f ′ := ∑i≥1 iaixi−1.

Thus, the squarefree part of f can be computed by f / gcd(f , f ′). You have to be careful over a
finite field, as the precondition on the field isn’t met (in that case 1 + 1 + · · ·+ 1 = 0 when there
are p ones) and it is possible that f ′ = 0 even when f ̸= 0. Though even in a finite field it still is
the case that gcd(f , f ′) = 1 does imply that f is squarefree.

1.5.3 Pseudocode

Input: A squarefree and monic f ∈ Z[x] of degree n and maximum coefficient in absolute value
of A

Let p ∈ [2B, 4B) be a random prime where B := 2n A
√

n + 1

Factor f̄ ∈ Zp[x] as g1 · · · gk for irreducible gi (mod p) and write the gi as polynomials with
coefficients absolutely bounded by p/2

T := {1, . . . , k}

for all S ⊆ T, starting with the smallest S:

g := ∏i∈S gi

if f mod g = 0 then

f := f /g

T := T \ S

add g to the list of irreducible factors

Output the list of irreducible factors of f

8

1.5.4 Analysis

Unfortunately, the loop may run exponentially many times, since there are 2k subsets of T. There is
a better method for determining which gi combine together to form actual irreducible factors of f ,
but it involves more mathematical machinery. In particular, an algorithm of Lenstra, Lenstra, and
Lovász from 1982 is able to solve the factoring problem in Q[x] in polynomial time in deg(f) = n
and in A, the size of the coefficients of f . At the time this was somewhat surprising, even to the
discoverers. Their method is even totally deterministic, which at first seems paradoxical since it
relies on a Zp[x] factoring method and there is no known deterministic polynomial time Zp[x]
factoring method. This is possible because there is a deterministic variant of the Zp[x] factoring
method that runs in time O∼(n3 + pn2). Even though this is exponential in log(p), they are able
to find an acceptable prime p (without relying on randomness) for which p is small enough that
running the exponential Zp[x] factoring algorithm will still be polynomial time in n and A.

9

	Factoring Polynomials
	Roadmap
	Distinct-degree Factorization
	Fermat's Little Theorem
	Efficiency
	Pseudocode
	Analysis

	Equal-degreee factorization
	The Chinese Remainder Theorem
	Fermat's Little Theorem in a field
	Applying Fermat's Little Theorem
	Splitting \boldsymbol{f}
	Psuedocode
	Analysis

	Factoring Squarefull Polynomials
	Pseudocode for a Complete Factoring Algorithm
	Analysis

	Factoring Polynomials in \boldsymbol{\Z[x]}
	Reducing \boldsymbol{f \bmod p}
	Squarefree Factorization
	Pseudocode
	Analysis

