
Computational Mathematics: Handout 06

Curtis Bright

October 3, 2022

1 Finite Fields and Reed–Solomon Codes

This handout will provide a brief introduction to finite fields and how they can be applied to Reed–
Solomon codes. Reed–Solomon codes are a popular source of codes used in coding theory; for
example, they are used in DVDs and Blu-ray discs. The parameters of the coding scheme can be
chosen in order to allow correcting an arbitrarily large number of errors.

1.1 Finite Fields

Recall a field is a ring that supports division by nonzero elements. A field is finite if it contains
a finite number of elements. For example, Q, R, and C are fields, but they all have an infinite
number of elements. Clearly Z is not a field (since only ±1 are have inverses) but the integers
modulo m (denoted Zm or Z/mZ) may or may not be a field.

We’ve seen that an inverse of x ∈ Zm exists exactly when gcd(x, m) = 1, i.e., x and m are coprime.
If m = p is a prime then the only x with gcd(x, p) ̸= 1 are the multiples of p, i.e., the x that satisfy
x ≡ 0 (mod p). It follows that an inverse exists for any x ∈ {1, 2, . . . , p − 1} = Zp \ {0} and thus
that Zp is a field when p is prime. It has p elements and is often denoted by the complete system
of representatives {0, 1, . . . , p − 1}.

On the other hand, if m is not a prime, then there must be some x ∈ {1, 2, . . . , p − 1} that is a
divisor of p and it follows that gcd(x, p) ̸= 1, i.e., that x−1 mod p does not exist. Thus, Zm is not a
field when m is not prime.

1.1.1 Takeaway

Thus, a finite field with p elements exists for any prime p and is commonly denoted Zp or Fp.
We’ve also seen that these are the only fields of the form Zm.

But it is conceivable that some other kind of finite fields exist that are not of the form Zm. This is a
very interesting question: Do any other finite fields exist? The answer is yes. To see how they can
be constructed, we review the construction of C from R.

1.2 From the Real to the Complex

How can the complex numbers be constructed from the real numbers? The standard construction
is to add a new element i that satisfies i2 = −1, i.e., a root of the R-unsolvable equation x2 + 1 = 0.
Alternatively, complex numbers can be defined as tuples (r1, i1) that can be multiplied via the rule

(r1, i1) · (r2, i2) := (r1r2 − i1i2, r1i2 + i1r2)

1

which follows after simplifying (r1 + i1i)(r2 + i2i) = r1r2 + (r1i2 + i1r2)i + i1i2i2 with i2 = −1.

There is another way of viewing this that will be particularly useful when constructing general
finite fields.

Consider the ring of polynomials with real coefficients (R[x]) but peform all computations “mod-
ulo x2 + 1”. A polynomial mod x2 + 1 will always produce a remainder polynomial of degree 0
or 1, i.e., a polynomial of the form a + bx. This construction is known as a “quotient ring” and is
commonly denoted by R[x]/⟨x2 + 1⟩. Performing computations mod x2 + 1 is equivalent to sub-
tracting off multiples of x2 + 1, or equivalently treating any multiples of x2 + 1 as zero. In other
words, setting x2 + 1 = 0. Look familiar? This is equivalent to x2 = −1 which looks suspiciously
like the definition of i. In fact, the two methods are equivalent; we have that

C ∼= R[x]/⟨x2 + 1⟩

where ∼= denotes the two structures are isomorphic; any expression in the left structure has an
equivalent expression in the right structure. The only difference is that the imaginary unit i on the
left has been “renamed” to x on the right. Otherwise the arithmetic in both is exactly the same.

1.3 From Fp to Fp2

The quotient construction used to construct the complex numbers from the reals is very similar
to how we can construct larger finite fields starting from the known finite fields Fp. Instead of
x2 + 1 we consider an irreducible polynomial of degree 2, i.e., one that does not factor into linear
factors. Over the real numbers x2 + 1 is irreducible, but over Fp this polynomial may or may not
be irreducible.

For example, in F2 we have that x2 + 1 = (x + 1)2. (The “freshman’s dream” comes true.) Simi-
larly, in F5 we have x2 + 1 = (x + 2)(x + 3), but in F3 the polynomial x2 + 1 does not factor any
farther so it is irreducible.

Consider the quotient ring Fp[x]/⟨ f ⟩ where f has degree 2 and is irreducible over Fp. By per-
forming all computations modulo f we can reduce any polynomial in Fp[x] to one of degree 0 or
1 by using the division algorithm (which always works in a field). That is, we have

Fp[x]/⟨ f ⟩ ∼= {a + bx : a, b ∈ Fp}

and thus Fp[x]/⟨ f ⟩ has p2 elements. Is it actually a field, though? For that to be the case, any
nonzero polynomial g = a + bx would need to have an inverse, i.e., the following congruence
must be solvable:

gh ≡ 1 (mod f).

In other words, there must exist h, k ∈ Fp[x] such that gh + k f = 1. Using the extended Euclidean
algorithm on g and f will solve this equation, assuming that gcd(g, f) = 1. However, since f is
irreducible and g is nonzero and of lower degree than f we do in fact have gcd(g, f) = 1.

Thus, we have constructed a finite field Fp[x]/⟨ f ⟩ with p2 elements. It is typically denoted Fp2 .
This might seem strange (you’d think f would have to be part of the notation) but in fact one can
show the surprising fact that there is at most one finite field of each order up to isomorphism. In
other words, if f and g are two irreducible polynomials of degree 2 then Fp[x]/⟨ f ⟩ ∼= Fp[x]/⟨g⟩
even though the arithmetic in these two rings will look different, any element a + bx in the for-
mer can be mapped onto some other c + dx in the latter that will have the exact same algebraic
behaviour.

2

1.4 All finite fields

This construction also works if f is an irreducible polynomial of degree n for any n ≥ 2. The only
difference is that the construction will produce

Fp[x]/⟨ f ⟩ ∼=
{

a0 + a1x + · · ·+ an−1xn−1 : ai ∈ Fp
}

and so in this case Fp[x]/⟨ f ⟩ has pn elements. Again, up to ismorphism there is one finite field
with pn elements and it is commonly denoted Fpn .

One can also show that no other finite fields exist. For example, there is no finite field with 6
elements, since 6 is not a prime power.

Thus, we have a complete classification of the finite fields. If the field size is a prime power q = pn

then a finite field exists and is isomorphic to Fq.

Warning: It is important to realize that Zq also has q elements but is not a field (except in the case
q = p) since it contains nonzero elements without an inverse. So Zq = Fq when q is prime and
Zq ̸= Fq when q = pn for n ≥ 2.

1.5 Primitive elements

One last fact about finite fields will be useful: they always have an element α for which any
nonzero element of the field can be written as a power of α.

In other words, in Fpn there is some element α so that the list

α, α2, . . . , αpn−1

consists of all the nonzero elements of Fpn . The set of nonzero elements of Fpn is commonly
denoted F∗

pn and α is said to generate F∗
pn .

1.6 Finite Fields in Sage

Finite fields of order q can be defined in Sage via GF(q). By default Sage will use an appropriate
irreducible polynomial in the construction but you can also explicitly set the irreducible polyno-
mial to use with the modulus argument. The elements of the field will be written as polynomials
in a variable a which can be set by the name argument or alternatively with the notation F.<a> =
GF(q).

[1]: F.<a> = GF(2^4) # F is defined to be a finite field of order 2^8
alpha = F.primitive_element() # Get a primitive element
[alpha^i for i in (1..2^4-1)] # List all nonzero elements

[1]: [a,
aˆ2,
aˆ3,
a + 1,
aˆ2 + a,
aˆ3 + aˆ2,
aˆ3 + a + 1,
aˆ2 + 1,

3

aˆ3 + a,
aˆ2 + a + 1,
aˆ3 + aˆ2 + a,
aˆ3 + aˆ2 + a + 1,
aˆ3 + aˆ2 + 1,
aˆ3 + 1,
1]

Equivalently, the elements of the finite field Fpn (polynomials of degree strictly less than n) can be
considered as vectors of length n over Fp, i.e.,

Fpn ∼= Fn
p.

For example, 1 + a + a3 in F24 would be represented by the vector [1, 1, 0, 1].

[2]: V = F.vector_space(map=False) # A vector space of dimension 10 over GF(2)
[V(alpha^i) for i in (1..2^4-1)] # List all nonzero elements of GF(2^10) as␣

↪→vectors

[2]: [(0, 1, 0, 0),
(0, 0, 1, 0),
(0, 0, 0, 1),
(1, 1, 0, 0),
(0, 1, 1, 0),
(0, 0, 1, 1),
(1, 1, 0, 1),
(1, 0, 1, 0),
(0, 1, 0, 1),
(1, 1, 1, 0),
(0, 1, 1, 1),
(1, 1, 1, 1),
(1, 0, 1, 1),
(1, 0, 0, 1),
(1, 0, 0, 0)]

1.7 Reed–Solomon and BCH Codes

Reed–Solomon codes are based on performing computations in finite fields. We will outline the
Bose–Chaudhuri–Hocquenghem codes (BCH) codes which are a kind of Reed–Solomon code.

In a BCH code the message you want to send is encoded in the coefficients of a polynomial. For
example, to send [1, 1, 0, 1, 0, 1] you could represent this as the polynomial 1+ y + y3 + y5 in F2[y].

To “encode” a message you multiply it by a “generator” polynomial g. The recipient of the mes-
sage can then divide the polynomial that they recieve by g. If they get a remainder of 0 this
indicates that the message was almost certainly recieved correctly. If they get a nonzero remain-
der this indicates that at least one coefficient of the recieved message was corrupted. We will see
how the recipient can determine which of the coefficients were corrupted (assuming there were at
most t corrupted coefficients, where t is a constant chosen in advance).

4

First, fix an n which will be an upper bound on the degree of the polynomials in the code. A
finite field should be chosen that has primitive nth roots of unity. For example, we can take n =
210 − 1 = 1023 because a primitive element α of F210 will be a primitive nth root of unity.

1.7.1 Generator polynomial

Let’s say we want to correct at most t errors. The generator polynomial g will be chosen so that α,
α2, . . ., α2t are all roots of g. (Recall α is a primitive nth root of unity.)

The Sage method minpoly returns a polynomial (with coefficients in the base ring) of minimal
degree that has a given element as a root. For example, alpha.minpoly() will give the smallest
polynomial with coefficients in F2 for which α is a root.

The smallest polynomial in F2[y] that has all α, . . ., α2t as roots will be the least common multiple
(lcm) of the minimal polynomial of each of α, . . ., α2t.

[3]: n = 1023
F.<a> = GF(2^10)
alpha = F.primitive_element()
assert(alpha^n == 1)
t = 1
g = lcm([(alpha^i).minpoly('y') for i in (1..2*t)])
print(alpha)
print(g)

a
yˆ10 + yˆ6 + yˆ5 + yˆ3 + yˆ2 + y + 1

1.7.2 Encoding a message via multiplication

Suppose m is a message of 256 bits encoded via the coefficients of a polynomial in R := F2[y].

[4]: R.<y> = GF(2)[] # The message will be sent as a polynomial in a new variable y
m = R.random_element(degree=255) # Generate a random message with 256 bits
print(m) # Message as a polynomial
print(m.list()) # Message as a list

yˆ255 + yˆ254 + yˆ251 + yˆ248 + yˆ247 + yˆ246 + yˆ245 + yˆ244 + yˆ241 + yˆ235 +
yˆ234 + yˆ232 + yˆ230 + yˆ229 + yˆ228 + yˆ227 + yˆ226 + yˆ218 + yˆ217 + yˆ208 +
yˆ207 + yˆ203 + yˆ202 + yˆ199 + yˆ198 + yˆ196 + yˆ195 + yˆ191 + yˆ190 + yˆ189 +
yˆ187 + yˆ186 + yˆ185 + yˆ179 + yˆ177 + yˆ171 + yˆ168 + yˆ167 + yˆ163 + yˆ160 +
yˆ158 + yˆ157 + yˆ152 + yˆ150 + yˆ149 + yˆ148 + yˆ147 + yˆ139 + yˆ137 + yˆ135 +
yˆ133 + yˆ132 + yˆ130 + yˆ129 + yˆ125 + yˆ123 + yˆ122 + yˆ120 + yˆ117 + yˆ116 +
yˆ115 + yˆ113 + yˆ108 + yˆ106 + yˆ104 + yˆ102 + yˆ100 + yˆ99 + yˆ98 + yˆ97 +
yˆ95 + yˆ92 + yˆ91 + yˆ89 + yˆ87 + yˆ86 + yˆ85 + yˆ84 + yˆ81 + yˆ80 + yˆ78 +
yˆ76 + yˆ74 + yˆ73 + yˆ70 + yˆ69 + yˆ68 + yˆ67 + yˆ65 + yˆ64 + yˆ62 + yˆ59 +
yˆ53 + yˆ50 + yˆ48 + yˆ46 + yˆ42 + yˆ41 + yˆ39 + yˆ36 + yˆ34 + yˆ33 + yˆ29 +
yˆ28 + yˆ27 + yˆ26 + yˆ24 + yˆ23 + yˆ21 + yˆ20 + yˆ16 + yˆ13 + yˆ12 + yˆ11 + yˆ9
+ yˆ8 + yˆ6 + yˆ5

5

[0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1]

To encode the message it is multplied by the generator polynomial g. The sent message is then the
polynomial s = m · g which is an element in the polynomial ring F2[y].

[5]: s = m*g
print(s.list())

[0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1]

The polynomial s is now sent to the recipient across a potentially noisy channel. If the received
polynomial r is the same as s then the receiver can recover r by dividing by g:

[6]: r = s
r_quo, r_rem = r.quo_rem(g)
assert(r_rem == 0)
print("No errors; the original message r/g was:")
print(r_quo.list())

No errors; the original message r/g was:
[0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,

6

0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1]

However, if the received message r was corrupted then r mod g will not be zero and so r/g does
not recover the original message:

[7]: r = s + y^101
r_quo, r_rem = r.quo_rem(g)
print(r_rem.list())

[1, 1, 0, 0, 1, 0, 0, 1, 1, 1]

1.7.3 Recovering the original message

How can the original message be recovered? Assuming there were at most t errors this is possible.

First, note that evaluating r at the points αi for 1 ≤ i ≤ 2t gives the same exact value as evaluating
the “error polynomial” e = r − s at the points αi for 1 ≤ i ≤ 2t. This is a simple consequence of
the fact that α, . . . , α2t are all roots of g, and therefore

e(αi) = r(αi)− s(αi) = r(αi)− m(αi)g(αi) = r(αi) for i = 1, . . . , 2t.

Therefore the receiver can compute e(αi) for i = 1, . . . , 2t. These by themselves do not reveal the
error polynomial e = e0 + e1y + · · · + en−1yn−1, but from the values e(α), . . . , e(α2t) the receiver
wishes to recover the coefficients e0, . . . , en−1 of the error polynomial e. This is known as an interpo-
lation problem. Later in the course we will see that uniquely recovering a degree n − 1 polynomial
requires n evaluations of the polynomial. In this case we only have 2t evaluations, but we’ve also
assumed that at most t coefficients of e are nonzero.

The error locator polynomial Let M be the locations at which the errors occured, i.e., M := { i :
ei ̸= 0 }. The error locator polynomial is

u(y) := ∏
i∈M

(1 − αiy)

and clearly u has zeros y = α−i where i is the location of an error. Thus, if we can determine u and
find its roots then we can find the error polynomial e (at least when its coefficients are in F2 and
have only two possible values; we merely need to flip the bits at the location of an error). We also
define a polynomial v related to u by

v(y) := ∑
i∈M

eiα
iy ∏

j∈M
j ̸=i

(1 − αjy).

What a mess! How can this conceivably be useful, given that the receiver doesn’t know M (or ei)
and therefore can’t construct either u or v?

The reason why u and v are useful is that some incredible simplification occurs when we divide v
by u, as shown below.

v
u
= ∑

i∈M

eiα
iy

1 − αiy
= ∑

i∈M
ei

∞

∑
k=1

(αiy)k =
∞

∑
k=1

yk ∑
i∈M

ei(α
k)i =

∞

∑
k=1

yke(αk).

7

The second equality uses the formal infinite generating series ∑∞
k=1 xk = x

1−x . Of course, we won’t
actually be using all terms appearing in this representation, since there are an infinite number of
them. We’ll cut it off after 2t + 1 terms, i.e., use it in the form y

1−y ≡ ∑2t
k=1 yk (mod y2t+1). In other

words, we have
v
u
≡

2t

∑
k=1

e(αk)yk (mod y2t+1) (∗)

and the receiver does know the right-hand side, since they can compute e(α), . . . , e(α2t).

Thus the problem becomes to find v/u that satisfies (∗) where deg(v) ≤ t and deg(u) ≤ t. This is
known as a “rational reconstruction” problem. Given the polynomial ∑2t

k=1 e(αk)yk find a rational
function that is equivalent to it (modulo a power of y).

Rational reconstruction Let w(y) := ∑2t
k=1 e(αk)yk be the right-hand side of (∗). Then rational

reconstruction problem is to solve the congruence

uw ≡ v (mod y2t+1) deg(u) ≤ t, deg(v) ≤ t

for u and v. The congruence can be solved using the Extended Euclidean algorithm on w and y2t+1,
as recall that the jth row in the EEA contains the coefficients (tj, sj) and the linear combination rj

which satisfy tjw + sjy2t+1 = rj, so u := tj and v := rj satisfies the congruence.

Though all rows of the EEA will produce solutions (u, v) of the congruence, not all rows will
produce solutions that satisfy the degree bounds. However, suppose that j is the first row for
which deg(rj) ≤ t. One can show that in fact deg(tj) = deg(r0)− deg(rj−1) ≤ 2t + 1 − (t + 1) = t
(Lemma 3.10, Modern Computer Algebra). Thus, the EEA can solve the congruence even with the
degree bounds.

There is a built-in method in Sage rational_reconstruct that performs rational reconstruction
on a given polynomial. Given w, m ∈ F2[y], w.rational_reconstruct(m, dv, du) solves wu ≡ v
(mod m) with the degree of v ∈ F2[y] at most dv and the degree of u ∈ F2[y] at most du.

[8]: w = add([r(alpha^i)*y^i for i in (1..2*t)]) # Construct polynomial w
print(w)

(aˆ9 + aˆ8 + aˆ6 + aˆ5 + aˆ3 + aˆ2 + a)*yˆ2 + (aˆ9 + aˆ8 + aˆ7 + aˆ4 + a + 1)*y

[9]: # Perform rational rational reconstruction on w
v, u = w.rational_reconstruct(y^(2*t+1), t, t)
print(u)

y + aˆ9 + aˆ7 + aˆ3 + aˆ2 + 1

[10]: # Determine the locations of the errors from the error locator polynomial u
and construct the corrected encoded message c
c = r
for root in u.roots():

i = (-root[0].log(alpha) % n)

8

print("u has a root alpha^(-{0}), so {0} is the location of an error".
↪→format(i))

c = c + y^i

Determine the original message from the encoded message c
c_quo, c_rem = c.quo_rem(g)
assert(c_rem == 0)
print("")
print("The original message was")
print(c_quo.list())
assert(c_quo == m)

u has a root alphaˆ(-101), so 101 is the location of an error

The original message was
[0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1]

1.7.4 An example of correcting multiple errors

The same method works when t is larger than one; the main difference is that the generator poly-
nomial will have higher degree for larger t, since g(αi) = 0 for i = 1, . . . , 2t.

[11]: t = 3
g = lcm([(alpha^i).minpoly('y') for i in (1..2*t)])
print("The generator polynomial g is")
print(g)
s = m*g # Polynomial to send
r = s + y^123 + y^25 + y^201 # Polynomial received with three terms corrupted
w = add([r(alpha^i)*y^i for i in (1..2*t)])
print("The polynomial w to rationally reconstruct is")
print(w)
v, u = w.rational_reconstruct(y^(2*t+1), t, t)
print("The rational reconstruction v/u is")
print(v/u)

Determine the locations of the errors from the error locator polynomial u
and construct the corrected encoded message c

9

c = r
for root in u.roots():

i = (-root[0].log(alpha) % n)
print("u has a root alpha^(-{0}), so {0} is the location of an error".

↪→format(i))
c = c + y^i

Determine the original message from the encoded message c
c_quo, c_rem = c.quo_rem(g)
assert(c_rem == 0)
assert(c_quo == m)

The generator polynomial g is
yˆ30 + yˆ29 + yˆ28 + yˆ26 + yˆ25 + yˆ24 + yˆ23 + yˆ22 + yˆ20 + yˆ19 + yˆ18 +
yˆ16 + yˆ14 + yˆ12 + yˆ10 + yˆ9 + yˆ8 + yˆ7 + yˆ6 + yˆ4 + 1
The polynomial w to rationally reconstruct is
(aˆ6 + aˆ4 + aˆ3 + a + 1)*yˆ6 + (aˆ9 + 1)*yˆ5 + (aˆ9 + aˆ7 + aˆ5)*yˆ4 + (aˆ9 +
aˆ7 + aˆ6 + aˆ5 + aˆ4 + aˆ3 + 1)*yˆ3 + (aˆ7 + aˆ5 + aˆ3 + aˆ2)*yˆ2 + (aˆ6 + aˆ4
+ aˆ2)*y
The rational reconstruction v/u is
(yˆ3 + (aˆ9 + aˆ7 + aˆ5 + a + 1)*y)/(yˆ3 + (aˆ8 + aˆ7 + aˆ6 + aˆ4 + aˆ3 + aˆ2 +
1)*yˆ2 + (aˆ9 + aˆ7 + aˆ5 + a + 1)*y + aˆ9 + 1)
u has a root alphaˆ(-201), so 201 is the location of an error
u has a root alphaˆ(-25), so 25 is the location of an error
u has a root alphaˆ(-123), so 123 is the location of an error

1.8 Correcting errors over nonbinary fields

If the base field is not F2 then merely finding the locations of the errors is not enough; you also
need to be able to recover the original coefficients of the sent polynomial. This is possible by using
both the numerator v and the denominator u of the rational reconstruction of w. Interestingly, the
derivative of the demoninator u is also useful. (Note that it is easy to compute the derivative of a
polynomial once you know the coefficients of the polynomial.)

By the product rule from calculus we have

u′(α−k) =
du
dy

∣∣∣∣
y=α−k

= ∑
i∈M

(−αi) ∏
j∈M
j ̸=i

(1 − αj−k).

Now suppose k ∈ M. When k ∈ M the product in this expression becomes zero (except when
k = i). Thus the summation index expression i ∈ M reduces to the trivial i ∈ {k} and we have

u′(α−k) = −αk ∏
j∈M
j ̸=k

(1 − αj−k).

Now, consider evaluating v at α−k. Similarly, the product in this expression becomes zero except

10

when k = i and we have

v(α−k) = ek ∏
j∈M
j ̸=k

(1 − αj−k) = ek ·
u′(α−k)

−αk .

Putting it all together, the recipient can compute ek for k ∈ M via the expression

ek = −αk · v(α−k)

u′(α−k)
.

[12]: # Example using the base field GF(3)

n = 728
F.<a> = GF(3^6)
alpha = F.primitive_element()
assert(alpha^n == 1)
t = 3
g = lcm([(alpha^i).minpoly('y') for i in (1..2*t)])
print("The generator polynomial g is")
print(g)

R.<y> = GF(3)[] # The message will be sent as a polynomial in a new variable y
m = R.random_element(degree=255) # Generate a random message with 256 trits
print("The message m to send is")
print(m.list()) # Message as a list

s = m*g # Polynomial to send
r = s + y^123 + 2*y^25 + y^201 # Polynomial received with three terms corrupted

w = add([r(alpha^i)*y^i for i in (1..2*t)])
print("The polynomial w to rationally reconstruct is")
print(w)
v, u = w.rational_reconstruct(y^(2*t+1), t, t)
print("The rational reconstruction v/u is")
print(v/u)

Determine the locations of the errors from the error locator polynomial u
and construct the corrected encoded message c
c = r
for root in u.roots():

k = (-root[0].log(alpha) % n)
udiff = u.diff()
ek = -alpha^k * v(alpha^(-k))/udiff(alpha^(-k))
c = c - ek*y^k
print("u has a root alpha^(-{0}), and {0} is the location of an error of␣

↪→magnitude {1}".format(k, ek))

Determine the original message from the encoded message c

11

c_quo, c_rem = c.quo_rem(g)
assert(c_rem == 0)
assert(c_quo == m)

The generator polynomial g is
yˆ24 + yˆ23 + yˆ21 + yˆ17 + yˆ15 + yˆ14 + 2*yˆ13 + yˆ12 + yˆ11 + yˆ10 + 2*yˆ8 +
yˆ7 + 2*yˆ6 + 2*yˆ3 + y + 1
The message m to send is
[2, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 2, 2, 2, 2, 0, 2,
2, 1, 0, 0, 0, 1, 0, 2, 2, 2, 1, 0, 0, 0, 0, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 1, 1,
0, 0, 0, 2, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 2, 2, 1, 1, 0, 2, 0, 0, 1, 2, 0, 0, 2, 2, 1, 1, 0, 0, 2, 2,
2, 0, 0, 1, 2, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,
0, 1, 1, 0, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 1, 1, 0, 0, 2, 1, 2, 1, 2, 2, 1, 0, 1,
2, 0, 0, 1, 0, 2, 2, 2, 2, 1, 0, 0, 0, 2, 0, 2, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2,
0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 1, 0, 2, 0, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0,
0, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 0, 2]
The polynomial w to rationally reconstruct is
(2*aˆ5 + aˆ4 + aˆ3 + 2*aˆ2 + 2)*yˆ6 + (2*aˆ4 + 2*aˆ3 + aˆ2 + 1)*yˆ5 + (aˆ5 +
2*aˆ4 + 2*aˆ3 + 1)*yˆ4 + (2*aˆ5 + 2*aˆ4 + aˆ3 + 2*aˆ2)*yˆ3 + (aˆ5 + 2*aˆ3 +
2*aˆ2 + 2)*yˆ2 + (2*aˆ5 + 2*aˆ4 + aˆ3 + 2*aˆ2 + a + 2)*y
The rational reconstruction v/u is
(2*yˆ3 + (aˆ5 + 2*aˆ4 + 2*aˆ2 + 2)*yˆ2 + (aˆ5 + aˆ3 + a + 2)*y)/(yˆ3 + (aˆ5 +
a)*yˆ2 + (aˆ3 + 2*aˆ2 + 2*a + 2)*y + 2*aˆ5 + aˆ3 + 2*aˆ2 + 2*a + 1)
u has a root alphaˆ(-201), and 201 is the location of an error of magnitude 1
u has a root alphaˆ(-123), and 123 is the location of an error of magnitude 1
u has a root alphaˆ(-25), and 25 is the location of an error of magnitude 2

1.9 Takeaway

Reed–Solomon codes are widely used in practice. For example, data on DVDs are split up into
192 × 172 matrices over F256 and then both the rows and columns are encoded using a Reed–
Solomon code.

The rows of the matrices are specified using polynomials in F256[y] of degree less than 172 and
then encoded as a polynomial of degree up to 182 by multiplying the row polynomial by g1(y) :=
∏10

i=0(y − αi) ∈ F256[y]. The decoding scheme presented above can then correct up to 5 errors.

For additional redundency, the columns of the matrices are specified using polynomials in F256[y]
of degree less than 192 and then encoded as a polynomial of degree up to 208 by multiplying the
column polynomial by g2(y) := ∏16

i=0(y − αi) ∈ F256[y] so that up to 8 errors can be corrected.

This is the first usage of non-prime finite fields in this course. Although we may not use them
again in this course, they arise frequently in mathematics and computer science and are used in
many more applications that stretch beyond coding theory.

12

	Finite Fields and Reed–Solomon Codes
	Finite Fields
	Takeaway

	From the Real to the Complex
	From \mathbb{F}_p to \mathbb{F}_{p^2}
	All finite fields
	Primitive elements
	Finite Fields in Sage
	Reed–Solomon and BCH Codes
	Generator polynomial
	Encoding a message via multiplication
	Recovering the original message
	An example of correcting multiple errors

	Correcting errors over nonbinary fields
	Takeaway

