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1 Cryptography and Coding Theory

We now discuss how modular arithmetic is very useful in the fields of coding theory and cryptog-
raphy.

Coding theory deals with how to send a message over a potentially “noisy” channel. For example,
imagine sending a spaceprobe to Mars. You might communicate with such a probe using radio
waves but when the radio waves are sent through space they will likely be corrupted somehow
by the time they are recieved. How can you guard against this? When you recieve a message you
would like to know if the message has been corrupted, and if so, ideally what the original message
was. The development of “error-correcting codes” makes this dream a reality!

Cryptography deals with how to send messages so that they can only be read by their intended
recipient. Even if you cannot guarantee the communication channel is secure cryptography allows
two parties the ability to communicate secretly. For example, your Internet Service Provider (ISP)
can (and sometimes does!) look at the content of webpages that you visit. In fact, there have been
cases of ISPs inserting ads into pages. Cryptographic protocols prevent them from doing this and
are a part of all modern Internet browsers. This way your ISP cannot read your credit card number
when you buy something using it online.

At first these applications seem almost miraculous, but we’ll see how with modular arithmetic
they are possible!

1.1 Check Digit Schemes

First, we will see an example of a scheme that will allow the recipient to detect (but not correct)
errors in the transmission. Universal Product Codes (UPC) that are used to track items in stores.
They are instantly recognizable since they are printed on virtually every kind of product:

1



What do the numbers mean? The first digit denotes the encoding systemed used, the next 5 digits
typically denote the manufacturer code and the 5 digits after that typically denote the product
code. The last digit is the check digit which can detect if an error is present in the code. Assuming
the digits are labelled a1, . . . , a12 they must satisfy the check digit equation

3a1 + 1a2 + 3a3 + 1a4 + · · ·+ 3a11 + 1a12 ≡ 0 (mod 10).

Once a1, . . . , a11 are known, a12 may be computed by

a12 := −(3a1 + 1a2 + 3a3 + 1a4 + · · ·+ 3a11) mod 10.

For example, in the above UPC 03600029145x (with x denoting the check digit) we have

x = −3(0 + 6 + 0 + 2 + 1 + 5)− 1(3 + 0 + 0 + 9 + 4) mod 10 = −58 mod 10 = 2.

A similar scheme is used in 10-digit ISBNs (International Standard Book Numbers):

The check digit equation is
10

∑
i=1

iai ≡ 0 (mod 11)
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and the check digit a10 can be computed by a10 := ∑9
i=1 iai mod 11 (since 10 ≡ −1 (mod 11)).

For example, the check digit x in the above ISBN 076452641x must be

x = (1 · 0 + 2 · 7 + 3 · 6 + 4 · 4 + 5 · 5 + 6 · 2 + 7 · 6 + 8 · 4 + 9 · 1) mod 11 = 168 mod 11 = 3.

The check digit in this case might be 10, it which case the letter X is used as the check digit (the
roman numeral for 10).

1.2 Error Correction Scheme

Now we will see a simple scheme that can detect and correct up to one error.

Let’s say we want to send an alphabetic string such as CODEWORD. By representing each char-
acter as an integer between 1 and 26 we want to send the sequence [3, 15, 4, 5, 23, 15, 18, 4]. We
will perform computations modulo 29 (the first prime larger than 26) and prepend the sequence
with two additional integers (say a0 and a1) so that the entire sequence a0, . . . , a9 satisfies the two
congruences

9

∑
i=0

ai ≡ 0 (mod 29)
9

∑
i=0

iai ≡ 0 (mod 29).

Intuitively, a0 is used to detect the presence and magnitude of an error and a1 is used to detect the
position of an error when an error exists. They may be computed via

a1 :=
9

∑
i=2

−iai mod 29 a0 :=
9

∑
i=1

−ai mod 29.

1.2.1 Example in Sage

[1]: # Characters in word to encode represented as integers
A = [0,0,3,15,4,5,23,15,18,4]
A[1] = sum(-i*A[i] for i in (2..9)) % 29
A[0] = sum(-A[i] for i in (1..9)) % 29
# Sequence with check digits prepended
print(A)

[22, 7, 3, 15, 4, 5, 23, 15, 18, 4]

1.2.2 Example of error correcting

What happens if you receive a corrupted message? This scheme can correct up to one error. For ex-
ample, let’s say that [22, 7, 3, 15, 4, 5, 23, 1, 18, 4] was recieved (literally decoding to CODEWARD).

[2]: A = [22,7,3,15,4,5,23,1,18,4]
# Both computations should produce zero if the word was sent correctly
print(sum(A[i] for i in (0..9)) % 29)
print(sum(i*A[i] for i in (0..9)) % 29)
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15
18

Because these computations are nonzero there must be at least one error; assume there is exactly
one.

The first check digit computation gives the magnitude of the error. Let e := ∑9
i=0 ai. Then some

integer ak in the sequence should be be replaced with ak − e in order for the first check digit
equation to hold.

The second check digit computation can be used to determine the position of the error (i.e., k from
above). Say that c is the “correct” value of the entry at index k and this was replaced with ak = c+ e
during transmission. Then

9

∑
i=1

iai − ke ≡ 0 (mod 29)

since subtracting off e from the recieved (incorrect) ak will cancel the error in the second check
digit computation. Now we can rearrange this to solve for k

k ≡ e−1
9

∑
i=1

iai (mod 29)

(using the extended Euclidean algorithm to compute e−1 mod 29). Finally, once we know k we
can replace ak with c = ak − e.

[3]: # Recieved message
A = [22,7,3,15,4,5,23,1,18,4]
# Compute error magnitude
e = sum(A[i] for i in (0..9)) % 29
# Compute error position
k = e^(-1)*sum(i*A[i] for i in (1..9)) % 29
print("Error in position {}".format(k))

# Correct message
A[k] = (A[k]-e) % 29
# Convert message to ASCII string and print it
print("".join([chr(A[i]+64) for i in (2..9)]))

Error in position 7
CODEWORD

1.3 Diffie–Hellman Key Exchange

Can two parties agree on a shared secret over a public channel? At first one might expect that
this is impossible, but in fact cryptographers Whitfield Diffie and Martin Hellman devised such a
scheme in 1976. (Documents declassified by the British government in 1997 revealed that Malcolm
Williamson of the British intelligence agency GCHQ had discovered the same method in 1974.)

First, let’s start with a puzzle from Caroline Calderbank:
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Alice wishes to mail Bob a ring. Unfortunately, anything sent through the mail will be stolen
unless it is enclosed in a padlocked box. Alice and Bob each have plenty of padlocks, but none to
which the other has a key. How can Alice get the ring safely into Bob’s hands?

1.3.1 One possible solution

Here is the solution Caroline had in mind in four steps:

1. Alice sends Bob a box with the ring in it and one of her padlocks on it.
2. When Bob receives the box he affixes his own padlock to the box and mails it back to Alice

with both padlocks on it.
3. When Alice gets it she removes her padlock and sends the box back to Bob.
4. When Bob receives the box again he can remove his padlock and then open the box!

What does this have to do with cryptography? Surprisingly enough, the idea in this solution is
the same idea that makes the Diffie–Hellman key exchange work.

1.3.2 Primitive roots mod p

A number g is a primitive root modulo p if the smallest solution of

gx ≡ 1 (mod p) (x > 0) (1)

is x = p − 1. Note that g must be coprime to p for solutions of (1) to exist. Fermat’s little theorem
implies that x = p − 1 is always a solution for any g with gcd(g, p) = 1. When x = p − 1 is the
smallest solution then g is a primitive root.

For example, 5 is a primitive root modulo 23 since 5x mod 23 for x = 1, . . . , 22 is

[5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1].

Conversely, 3 is not a primitive root modulo 23 since 3x mod 23 for x = 1, . . . , 22 is

[3, 9, 4, 12, 13, 16, 2, 6, 18, 8, 1, 3, 9, 4, 12, 13, 16, 2, 6, 18, 8, 1].

[4]: show([5^x % 23 for x in (1..22)])
show([3^x % 23 for x in (1..22)])

[5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1]

[3, 9, 4, 12, 13, 16, 2, 6, 18, 8, 1, 3, 9, 4, 12, 13, 16, 2, 6, 18, 8, 1]

Sage provides the built-in function primitive_root which computes a primitive root modulo a
given modulus m.

[5]: primitive_root(23)

[5]: 5
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1.3.3 Outline of Diffie–Hellman

Say Alice wants to send a secret to Bob over an insecure channel. The first step is to derive a shared
secret key that only Alice and Bob know. They can do this as follows:

1. Alice chooses a prime p by some random process.
2. Alice chooses some g, a primitive root modulo p.
3. Alice chooses a random integer a and computes A := ga mod p.
4. Alice sends p, g, and A to Bob, but keeps a secret.
5. Bob receives p, g, and A, chooses a random integer b and computes B := gb mod p.
6. Bob sends B to Alice but keeps b secret.
7. Alice computes Ba mod p and Bob computes Ab mod p. This is their shared secret number.

1.3.4 Example

1. Alice chooses the prime p = 31337.
2. Alice chooses g = 3 which is a primitive root modulo p.
3. Alice chooses the random intger a = 11589 and computes A = 311589 mod p = 14479.
4. Alice sends p, g and A to Bob.
5. Bob chooses the random integer b = 31239 and computes B = 331239 mod p = 2879.
6. Bob sends B to Alice.
7. Alice computes 287911589 mod p = 27390 and Bob computes 1447931239 mod p = 27390.

1.3.5 Example in Sage

[6]: p = 31337
g = primitive_root(p)
print("p = {}, g = {}".format(p, g))

# Alice generates a random integer between 0 and p-1
a = ZZ.random_element(p)
# Bob generates a random integer between 0 and p-1
b = ZZ.random_element(p)
print("a = {}, b = {}".format(a, b))

A = g^a % p # Alice computes A and sends it to Bob
B = g^b % p # Bob computes B and sends it to Alice
print("A = {}, B = {}".format(A, B))

B^a % p # Alice computes B^a mod p
A^b % p # Bob computes A^b mod p
print("B^a = {} mod p and A^b = {} mod p".format(B^a % p, A^b % p, p))

p = 31337, g = 3
a = 15181, b = 28095
A = 17025, B = 7570
Bˆa = 30228 mod p and Aˆb = 30228 mod p
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1.3.6 Why does this work?

First, note that Ba and Ab produce the same number modulo p because

Ba ≡ (gb)a ≡ gba ≡ gab ≡ (ga)b ≡ Ab (mod p).

Also note that an evesdropper can learn p, g, A, and B, but does not know a or b. In order to
compute these they would have to solve one of the following congruences for a or b:

ga ≡ A (mod p) gb ≡ B (mod p)

Solving such an equation is known as the discrete logarithm problem because it is equivalent to
computing a base-g logarithm modulo p. In other words, the congruences can be rewritten as

logg(A) ≡ a (mod p) logg(B) ≡ b (mod p).

Perhaps surprisingly, computing discrete logarithms is a famously difficult problem. This is in
stark contrast to computing logarithms such as log2(x) or ln(x) over the real numbers which can
be done efficiently.

1.3.7 Takeaway

Diffie–Hellman relies on the property that the modular exponentiation gx mod p can be done effi-
cently (via repeated squaring) but no one knows any method of computing the modular logarithm
logg(x) mod p efficiently (i.e., polynomial in len(p)) even when g is small, e.g., g = 3.

For example, suppose you choose a 1024-bit prime p (which can fit in sixteen 64-bit words). It is
estimated that computing logg(x) mod p requires on the order of 100 million dollars in computing
power.

While this is quite expensive, such a computation could actually be afforded by large
governments—so if you really want your secrets to be safe, choose a 2048-bit prime instead (which
can fit in thirty-two 64-bit words). It’s estimated that computing logg(x) mod p would now be a
billion times harder, i.e., would cost 100 trillion dollars! Conversely, computing gx mod p is only
slightly more challenging.

1.3.8 Application to communication

Note that Diffie–Hellman only enables two parties to agree on the same shared secret. At first this
might seem useless for communication purposes, since neither party can control what the shared
secret is. However, we will now see a way that a shared secret can enable secure communication
over an insecure channel.

First, we will describe a simple method that only allows sharing a short message (shorter than the
shared secret) but demonstrates the basic principle.

Suppose Alice and Bob have agreed on the shared secret in the example above (27390) and Alice
wishes to send Bob the message CAT. First, this string can be converted to a number by treating
it as a base-27 number with A=1, B=2, C=3, etc. Then Alice wishes to send the number 3 · 272 + 1 ·
27 + 20 = 2234.
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Now Alice writes the shared secret and the message to send in binary: 27390 is 110101011111110
and 2234 is 000100010111010. She then adds together the digits in the same position modulo 2:

110101011111110
+ 000100010111010

110001001000100

The result is 110001001000100 in binary which is 25156 in decimal. This number is sent to Bob
who can add the shared secret to the number in a similar manner in order to recover the original
message. This works because 0 + 0 ≡ 1 + 1 ≡ 0 (mod 2). In other words, adding the shared
secret a second time will “cancel off” the secret and Bob will be left with the original message.

Conversely, an evesdropper who does not know the secret cannot perform this cancellation; there
is no way of recovering the bits of the original message or shared secret from the encoded message.
However, it only works for short messages, since the message cannot be longer than the shared
secret without leaking information.

1.3.9 Stream ciphers

The above communication method only works for short messages but it can be augmented in
order to allow longer messages.

The idea is to use a stream cipher which from a secret key will produce a continuous keystream of
“pseudorandom” numbers. Since the keystream is deterministically generated from a secret key
it is not truly random—however the numbers should “behave” as if they were random.

In particular, an adversary should not be able to determine the key from the keystream and should
also not be able to predict future values of the keystream.

Then Alice and Bob can use Diffie–Hellman to agree on a shared secret key which they use to
seed a stream cipher (which they also agree on). Then they use the same process as above (using
addition mod 2 on the bits of the message) to encode and decode their messages. However, they
add the numbers from the keystream to the message instead of the key itself.

Because stream ciphers can have very long periods (i.e., they take a long time to start repeating)
this allows Alice and Bob communicate much longer messages using a single Diffie–Hellman key
exchange.

1.4 RSA Cryptosystem

Diffie–Hellman requires both parties to work together in order to exchange a message over an
insecure channel. What if Alice wants to send an encrypted message to Bob who is currently not
available to reply?

One solution would be for Alice and Bob to set up a shared key in advance for communicating
purposes, but this has some downsides:

1. Setting up keys in advance can require a lot of work. If there are n parties that each would
like to communicate between each other then there are (n

2) keys (i.e., a quadratic number of
keys in n) that need to be exchanged in advance.

2. It may not be possible to set this up in advance, e.g., if Alice did not know Bob before wanting
to contact him.
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It might seem like an impossible problem for Alice to securely send a message to someone that
she’s never previously communicated with—and someone who does not respond back in any
way. However, we’ll now see that the RSA cryptosystem makes this possible.

1.4.1 Public-key cryptography

The idea behind public-key cryptography is to introduce an asymmetry between encoding and
decoding. In symmetric encryption both encoding and decoding is done with the same shared
key which has to be known by both parties that are communicating.

In public-key cryptography there are separate keys for encoding and decoding. The encoding key
is known as the public key (because it can be publicly distributed) and the decoding key is known
as the private key. The private key has to be kept secret since anyone who has access to it can
decode encrypted messages.

Using such a scheme a group of n people only need to generate 2n keys in order to allow anyone
to securely communicate with anyone else. Parties also do not have to communicate in advance;
they can publish their public keys on a “key server” or by other means such as through their
webpage.

To communicate a secure message to someone you only need to look up their public key and then
encode your message using that key. Only the holder of the private key associated with that public
key is able to decode the message.

Sounds great in theory, but how can it be implemented in practice?

1.4.2 Enter Rivest, Shamir, and Adleman

Diffie and Hellman proposed the idea of public-key cryptography in 1976 in addition to their
key distribution method. However, they were unable to determine a method for realizing such a
scheme.

In 1977, the three cryptographers Ronald Rivest, Adi Shamir, and Leonard Adleman tried many
different methods for designing a public-key cryptosystem. Rivest recounts that sometimes they
thought such a scheme was actually impossible to achieve.

In April 1977, Rivest, Shamir, and Adleman spent Passover at a student’s house, apparently drink-
ing Manischewitz wine and leaving around midnight (or so the legend goes). Rivest couldn’t sleep
and developed the basics of what would later be known as the RSA cryptosystem after the three
who had worked on developing a working public-key cryptosystem.

Similar to the case of Diffie and Hellman’s scheme, documents declassified by the British govern-
ment in 1997 revealed that Clifford Cocks of the British intelligence agency GCHQ had discovered
an equivalent system to the RSA method in 1973.

1.4.3 Outline of RSA

In order to realize public-key cryptography in practice we need a “one-way function”—a function
that is easy to compute but hard to invert.

The Diffie–Hellman scheme used the discrete logarithm problem and the RSA cryptosystem will
use the factorization problem (given a number compute its prime factors). It is easy to multiply
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two prime numbers together but difficult to go in the other direction.

The intuition behind RSA is that computations will be performed modulo a number N that is
the product of two prime numbers. Encoding a message x will be done by performing a modu-
lar exponentiation xe (mod N) for some specific integer e. Decoding a message will be done by
computing the eth root of a number mod N which is equivalent to performing a modular expo-
nentation xd (mod N) for some specific integer d.

In other words, encryption is done via the process x 7→ xe mod N and decryption is done via the
process x 7→ xd mod N. Thus e must be public and d must be private.

Generation of public and private keys The following steps are done by Alice in order to create
RSA public and private keys:

1. Select two prime numbers p and q by some random process and compute N = p · q.
2. Compute φ(N) = (p − 1)(q − 1). Euler’s theorem tells us that xφ(N) ≡ 1 (mod N) for all x

coprime to N.
3. Select an e > 1 that is coprime to φ(N). This choice can be random or fixed. The number

e = 216 + 1 = 65537 is typical and even e = 3 works fine (though such a small choice is less
secure in some settings).

4. Compute d := e−1 mod φ(N) using the extended Euclidean algorithm. Note that the inverse
must exist since e is coprime to φ(N).

5. Publish N and e as your public key. Keep d as your private key. The numbers p, q, and φ(N)
must not be published; they can be kept private or discarded at this point.

As previously mentioned, a message x is encoded to xe mod N and an encoded message y is
decoded to yd mod N.

Note that computing the inverse of e mod φ(N) is easy (via the EEA) if φ(N) = (p − 1)(q − 1) is
known. Alice does know φ(N) because she choose p and q. However, an attacker has no known
way of computing φ(N) without knowing the factorization of N.

Why does this work? The fundamental theory that RSA relies on is Euler’s theorem that xφ(N) ≡
1 for x coprime to N. Using this we can show that encryption and decryption are inverses. In other
words, if you encrypt something and then decrypt it you end up with what you started with.

In symbols, we want to show that (xe)d ≡ x (mod N) for all x.

Note that d is the inverse of e mod φ(N) so we have that ed ≡ 1 (mod φ(N)). Thus we have that
ed = 1 + kφ(N) for some integer k.

First suppose x is coprime to N. Then we have

(xe)d ≡ xed ≡ x1+kφ(N) ≡ x · (xφ(N))k ≡ x · 1k ≡ x (mod N)

where Euler’s theorem was used to reduce xφ(N).

This is the main case, though to complete the proof we must also consider the rare case when x
and N are not coprime. This happens when x is a multiple of p or q (since the only prime divisors
of N are p and q), although in practice this will never occur if p and q are large primes chosen
randomly.
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Say x is a multiple of p and not a multiple of q. Then x ≡ 0 (mod p), so

(xe)d ≡ 0d ≡ 0 ≡ x (mod p).

By Fermat’s little theorem we have xq−1 ≡ 1 (mod q). Then

(xe)d ≡ xed ≡ x1+kφ(N) ≡ x · (xq−1)k(p−1) ≡ x · 1k(p−1) ≡ x (mod q)

where Fermat’s little theorem was used to reduce xq−1. Then (xe)d ≡ x modulo p and q and the
Chinese remainder theorem then implies (xe)d ≡ x (mod p · q).

Similar reasoning applies when x is multiple of q but not p. Incidentally, if x is a multiple of p and
q then x ≡ 0 (mod N) so the theorem still holds (but this case is not useful for encryption).

1.4.4 Example

[7]: # Set up public and private keys
while True:

p = random_prime(10^30)
q = random_prime(10^30)
n = p*q
phi = (p-1)*(q-1)

# Ensure that phi(n) is coprime to 3
if phi % 3 != 0:

break

e = 3
d = e^(-1) % phi

show(html("\\begin{align*}"+
"p&={}\\\\".format(p)+
"q&={}\\\\".format(q)+
"n&={}\\\\".format(n)+
"\\varphi(n)&={}\\\\".format(phi)+
"e&={}\\\\".format(e)+
"d&={}".format(d)+
"\\end{align*}"))

p = 254720409927450222938794161191
q = 305516782275999176882684397551
n = 77821360021058069052639187980342253936597343533274219643241

φ(n) = 77821360021058069052639187979782016744393894133452741084500
e = 3
d = 51880906680705379368426125319854677829595929422301827389667
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[8]: # Message to send
message = "ANTIDISESTABLISHMENTARIANISM"
l = len(message)

# Convert message to list of integers in the range 1-26
A = [ord(message[i])-64 for i in range(l)]

# Convert message to an integer
x = sum(A[i]*27^i for i in range(l))

# Encode codeword
y = power_mod(x, e, n)

# Decode encrypted codeword
z = power_mod(y, d, n)

show(html("\\begin{align*}"+
"x&={}\\\\".format(x)+
"y=x^e\\bmod n&={}\\\\".format(y)+
"z=y^d\\bmod n&={}".format(z)+
"\\end{align*}"))

print("The decrypted message is " + "".join([chr(z.digits(base=27)[i]+64) for i␣
↪→in range(l)]))

x = 6082376141129771522218829774926980354535
y = xe mod n = 20734787136876232396451797931448788942105010872280064654976

z = yd mod n = 6082376141129771522218829774926980354535

The decrypted message is ANTIDISESTABLISHMENTARIANISM

Warning Although this is the basic idea, RSA does have to be used carefully in practice as in
some cases there are ways that an attacker can break the system.

For example, the choice of e = 3 is conveinient because it allows encoding to be done very quickly
(just a cubing modulo N).

However, this is insecure if the message x to encrypt is small, namely x < N1/3.

Why? In the case x < N1/3 it follows that x3 < N, so the encrypted message will just be the
integer cube of x (i.e., no reducing modulo N will be done). Then x be recovered by computing the
cube root of x3 over the reals or integers which is an easy operation.

1.4.5 Takeaway

RSA provides a way of sending secure messages to anyone who has published their public key.
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Generating a public/private keypair involves finding 2 large random primes p and q and comput-
ing an inverse modulo (p − 1)(q − 1). After that, encryption and decryption is simply done via
exponentation modulo pq.

Since p and q are relatively large (e.g., 1024-bits) computations modulo pq are relatively expensive,
at least compared with most encryption algorithms based on stream ciphers, for example. For
this reason RSA is not normally used to encrypt messages. Instead, it it normally only used to
communicate a shared secret key that is then used to seed a stream cipher or some other symmetric
encyption method.

RSA also enables digital signatures. Alice can prove that she had access and ‘signed’ a message x
by computing S = xd mod N.

Anyone can now verify that Alice’s signature is genuine by checking that Se ≡ x (mod N) where
(e, N) is Alice’s public key. However, no one can sign a message pretending to be Alice unless
they know d.

How secure is RSA? When RSA is performed correctly it provides very good security because
there is no known method of efficiently computing eth roots modulo N without knowing the
prime factorization of N.

Moreover, there is no known method of efficiently computing the prime factorization of an arbi-
trary integer N.

This is not for lack of trying: RSA Labs created an “RSA Factoring Challenge” of many numbers
N = p · q of various lengths that they challenge anyone to try to factor.

Currently, the largest RSA challenge number that has been successfully factored has 829 bits. This
was completed in 2020 using numerous computers simultaneously on a computing cluster and in
total requiring about 2,700 computer years.

In particular, factoring an RSA key of 1024 bits is currently out of the realm of feasibility. (As far as
anyone knows.) Thus, it is very easy for systems like Sage to produce simple numerical problems
that are totally out of reach of modern computers to solve:

[9]: random_prime(2^512)*random_prime(2^512)

[9]: 21807482014441466089665995062811164278420889212153514930552517180492621271161447
75862795939811985201275044367222322605882052692154666263725252734433075931110641
96018270521730396366522637101094575420394701636396206272922054831876968746765291
87208685732045937734942562028802521534642917821686690367733828608031

1.4.6 Final thoughts

G. H. Hardy was one of the most celebrated mathematicians of the twentieth century and a leading
expert on number theory. He among anyone else was in the best position to see its amazing
potential applications and yet in 1940 he wrote:

No one has yet discovered any warlike purpose to be served by the theory of numbers
or relativity, and it seems very unlikely that anyone will do so for many years.
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As we saw, public-key cryptography would be designed a mere 36 years later.

Incidentally, he also cites the theory of relativity as another example of a “useless” theory. This was
also proven incorrect at almost the same time—in 1973 the U.S. Department of Defense proposed
the Global Positioning System (GPS) which relies on the theory of relativity to work correctly.
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