
Computational Mathematics: Handout 04

Curtis Bright

September 21, 2022

1 Modular Arithmetic

Modular arithmetic is a system for performing arithmetic in which computations are limited to a
finite set with a “wrap-around” effect.

An everyday example of modular arithmetic is used as the time displayed on
a clock. For example, 1 hour past 1 o’clock is 2 o’clock and 5 hours past
5 o’clock is 10 o’clock, but 7 hours past 7 o’clock is 2 o’clock. In symbols:

<+< =x

T+T =�

This is because 12 o’clock is treated as “zero”; if you go past tweleve o’clock then what matters
is how much you went past 12 o’clock. In other words, you can remove all multiples of 12 hours
from the time to get the “clock” time.

In modular arithmetic this is written as:

5 + 5 ≡ 10 (mod 12)
7 + 7 ≡ 2 (mod 12)

While at first this might seem like a mere curiosity, in fact modular arithmetic has an enormous
number of applications. For example, it underlies the mathematics used to secure credit card
information on the internet.

1.1 Formal Definition

Given integers a, b, and m we say that a and b are congruent modulo m and write

a ≡ b (mod m)

if b − a is a multiple of m. Alternatively, if both a and b have the same remainder when divided by
m.

For example, 14 ≡ 26 (mod 12) because 26 − 14 = 2 · 12.

1

Using the notation a mod m to mean the remainder produced by dividing a by m we can check
that 14 ≡ 26 (mod 12) by verifying that

26 mod 12 = 14 mod 12 = 2.

1.1.1 Note on notation

Note the notations a = b mod m and a ≡ b (mod m) are quite similar and this can be useful
because they mean similar things. However, it is important to note that they are saying different
things.

• In the case a = b mod m:

Here “mod” is being used as a function meaning that b mod m has a single fixed value for
fixed values of b and m.

For example, 14 mod 12 = 2.

• In the case a ≡ b (mod m):

Here “mod” is not a function; the expression a ≡ b (mod m) does not define a to be a unique
integer but any integer that has a remainder of b when divided by m.

For example, 2 ≡ 14 (mod 12) but also −10 ≡ 14 (mod 12).

In mathematics the second notation defines what is known as an equivalence relation that partitions
integers into “equivalence classes”. Every integer belongs to one and only one equivalence class
mod m.

For example, mod 2 there are exactly two equivalence classes: the class of even numbers and the
class of odd numbers. Equivalence classes in modular arithmetic are also known as residue classes.

1.1.2 Unique representative

It is often useful to have a single unique representative for each equivalence class. In the case of
modular arithmetic over the integers it is usually conveinient to define the representative of a class
to be the smallest nonnegative integer in the class.

For example, consider the class of integers equivalent to 14 (mod 12) which is
{. . . ,−22,−10, 2, 14, 26, . . . }. This class has the representative 2.

A list containing all possible representatives is known as a system of representatives. For example,
with the above choice of representatives we have that every class is represented by one of the
following integers:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

12 is not a representative as it is in the class represented by 0.

1.1.3 Computing modular expressions

Given an expression involving integers and +, −, and × we can evaluate it modulo m by:

• Reducing each integer to its representative modulo m so that it lies in the range between 0
and m − 1.

• Evaluating each operation on the reduced integers.

2

• Immediately after each operation reduce its result modulo m.

For example:

20 × (−89) + 32 ≡ 6 · 2 + 4 (mod 7)
≡ 12 + 4 (mod 7)
≡ 5 + 4 (mod 7)
≡ 9 (mod 7)
≡ 2 (mod 7)

This works because any integer x in a modular expression can be replaced by x∗ + qm where x∗

is the remainder of x/m and q ∈ Z is the quotient of x/m. Expanding this out (e.g., using the
distributivity property for integers) will result in x being replaced by x∗ in the expression and
any additional terms created by this expansion will multiples of m and can therefore be removed
modulo m.

How large can the intermediate results get? When working modulo m the intermediate results
will never become larger than m2. The worst case occurs when multiplying (m − 1) · (m − 1) but
this is smaller than m2.

This holds regardless of how large the starting integers are or how many operations there are.
This allows us to quickly evaluate complicated expressions in modular arithmetic that would be
impractical to evaluate using normal arithmetic.

What about division? You cannot arbitrarily divide both sides of an equivalence in modular
arithmetic by a constant. Even if x, y, and m are all divisible by c, x ≡ y (mod m) does NOT
imply that x/c ≡ y/c (mod m). For example, 0 · 2 ≡ 2 · 2 (mod 4) but 0 ̸≡ 2 (mod 4).

The “correct” way to perform this division would be to cancel c from x, y, and m simultaneously,
e.g., 0 · 2 ≡ 2 · 2 (mod 4) implies 0 ≡ 2 (mod 2).

1.2 Modular inverses

As demonstrated above, cancellation using division has to be done carefully. At first it would
seem as if we cannot even define division in modular arithmetic. For example, what would 1/3
(mod 10) even mean? However, we will see it will be possible to give meaning to this expression
using modular inverses.

1.2.1 Defining division

In modular arithmetic we don’t deal with fractions of a number or numerical approximations of a
number. For example, an equation like 1/3 = 0.333 . . . is meaningless in modular arithmetic.

However, we can still algebraically deal with expressions like 1/3. How can we make sense of this?
Let’s say we denote the quantity 1/3 (whatever that means) by x. If this expression is to make
sense then 3x should be 1. In other words, to determine if we can make sense of 1/3 we would to
find x (if it exists) which satisfies the congruence

3x ≡ 1 (mod m).

3

By definition, this means that 3x − 1 is a multiple of m (let’s say that it is k times m for some integer
k).

In other words, in order to find the modular inverse of 3 (modulo m) we want to solve

3x − 1 = km for integers x and k.

1.2.2 Look familiar?

The Euclidean algorithm now comes to the rescue! Rewriting this with y = −k, we want to solve

3x + ym = 1.

Recall that the Euclidean algorithm gives us a method to find integers x and y such that

3x + ym = gcd(3, m). (∗)

Thus, if gcd(3, m) = 1 then an x exists so that 3x reduces to 1 modulo m; x is said to be the modular
inverse of 3 and is typically denoted by 3−1. Note that this assumes the modulus m is clear from
the context; to be unambiguous it should be denoted 3−1 (mod m).

1.2.3 Example

Note that 3 and 10 share no common factors, so their gcd is 1; numbers that share no common
factor are said to be coprime. The above reasoning indicates that we should be able to determine
the value of 3−1 mod 10.

To do this, we run the Euclidean algorithm on 3 and 10:

10 · 1 + 3 · 0 = 10 initialization
10 · 0 + 3 · 1 = 3 initialization
10 · 1 + 3 · (−3) = 1 subtract ⌊10/3⌋ = 3 times the second from the first

Thus, y = 1 and x = −3 is a solution of (∗).

Note that 7 is the unique representative (as previously defined) of the equivalence class containing
x = −3.

Indeed, 3 × 7 = 21 ≡ 1 (mod 10) and we have found an inverse of 3! Thus, we say that 3−1 ≡ 7
(mod 10).

1.2.4 Uniqueness

Say a and m are coprime. Could it be that there are multiple possible values for a−1 (mod m)?

At first glance this isn’t crazy, since there will be infinitely many integer solutions (x, y) to the
equation

ax + my = 1. (1)

However, all solutions x will belong to the same congruence class modulo m; thus there is indeed
only a single solution modulo m and modular inverses (if they exist) are unique.

Formally, if (x0, y0) is a solution of (1) then all solutions are given by

(x0 − mk, y0 + ak) for k ∈ Z.

4

1.2.5 Non-existence

When a and m are not coprime, a−1 (mod m) does not exist because there is no solution of

ax + my = 1. (2)

Indeed, any common divisor of a and m will divide the left-hand side of (2) so must also divide
the right-hand side, i.e., 1—meaning the divisor must be trivial.

For example, x = 2−1 (mod 10) does not exist, since 2x + 10y must be even and cannot ever be 1.

1.2.6 Analysis

We’ve already seen that addition, subtraction, and multiplication of numbers at most m can be
done in O(n2) word operations where n = len(m) = O(log m).

Furthermore, we’ve also seen that the extended Euclidean algorithm when run on numbers at
most m uses O(n2) word operations.

Assuming that the operands are specified using the standard unique representative (i.e., by num-
bers at most m) then we can perform addition, subtraction, multiplication, and division (by a
number coprime to m) in O(n2) word operations.

1.3 Modular exponentiation

What about computing ak (mod m)? Of course, this could be computed by multiplying a by itself
k − 1 times (and reducing the result modulo m after each multiplication so that the number does
not grow extremely large).

1.3.1 Cost analysis

As usual, suppose that n = len(m). We can also assume that a is reduced modulo m. Then
multiplying by a uses O(n2) word operations and reducing the result modulo m also uses O(n2)
word operations.

Since this must be done k − 1 times, computing ak (mod m) using this method requires O(kn2)
word operations.

Is this acceptable? At first, this may seem like a decent computational cost, as it is linear in k.
Linear running times are usually good—assuming they are in the size of the input. But in this case
the size of the input is len(k), not k itself. An O(k) running time is actually exponential in the size
of the input—which is very bad.

For example, imagine trying to compute 21234567890 (mod 10). In this case the result will be a
single digit and the exponent 1,234,567,890 fits in a single 32-bit word. However, using the simple
algorithm of repeated multiplication will require over 1.2 billion multiplications!

Of course, you really don’t want to be doing over a billion multiplications to compute a single
digit if you don’t have to!

5

1.3.2 Can we do better?

Can we compute ak (mod m) faster than using repeated mutliplication?

The answer is yes! In fact, we can compute it using O(log k) operations modulo m which is very
fast—even for k like k = 1,234,567,890.

Moreover, the algorithm essentially only uses a single fairly simple trick.

The fact that this trick exists makes modular exponentiation a very important and useful opera-
tion that has a wealth of applications. For example, later we’ll see how it underlies how private
information is kept secure on the internet.

1.3.3 Repeated squaring

Fast modular exponentiation relies on a trick known as repeated squaring. The idea is that the
sequence of numbers

a (mod m)

a2 (mod m)

a4 (mod m)

a8 (mod m)

...

a2i
(mod m)

...

a2⌊lg(k)⌋
(mod m)

can be computed quickly, because each number in the sequence is the square of the previous num-
ber. For example, once a4 (mod m) is known, one can compute a8 (mod m) = a4 · a4 (mod m)
using a single multiplication mod m. Since there are O(len(k)) numbers in the sequence, comput-
ing them all takes O(len(k) len(m)2) word operations.

How does this help? Okay, so we are quickly able to compute a2i
(mod m) for i = 0, . . . , ⌊lg(k)⌋.

However, it’s not immediately clear how this helps us compute ak (mod m) for arbitrary k—since
unless it happens to be the case that k is a power of 2 the quantity that we want to compute will
not be in the list of numbers that we did compute.

The solution The solution is to “build” the number that we want (i.e., ak (mod m)) out of the
numbers that we computed (i.e., a2i

(mod m) for i up to l := ⌊lg(k)⌋).

How can we do this? Note that k can always be represented as a sum of powers of 2:

k =
l

∑
i=0

ki · 2i

where ki is the ith bit in the binary representation of k. For example, 19 = 24 + 21 + 20 because
10011 is the binary representation of 19.

6

Then we have that

ak ≡ ak020+k121+k222+···+kl2l
(mod m)

≡ ak020 · ak121 · ak222 · · · akl2l
(mod m)

≡
l

∏
i=0
ki=1

a2i
(mod m).

Thus once a2i
(mod m) have been determined for i ≤ l we can compute ak (mod m) by multiply-

ing together the a2i
(mod m) for which ki = 1 (i.e., when the ith bit of k in binary is 1).

For example, a19 ≡ a16 · a2 · a1 (mod m) because we have that k4 = k1 = k0 = 1 and k2 = k3 = 0.

Cost analysis First, note that the binary representation of a number k can be computed in
O(len(k)) word operations.

Once we have that and the sequence of numbers from before we have to perform at most
l − 1 = O(len(k)) multiplications modulo m. Note that the worst case occurs when the binary
representation of k contains nothing but 1s and the best case occurs when k is a power of 2.

Thus, the cost of computing ak (mod m) via repeated squaring is the sum of:

• The cost of performing repeated squaring: O(len(k) len(m)2)
• The cost of finding the binary representation of k: O(len(k))
• The cost of building the result out of the numbers computed via repeated squaring:

O(len(k) len(m)2)

In total, this requires O(len(k) len(m)2) word operations.

1.3.4 Built-in Sage function

The Sage function power_mod performs modular exponentiation using repeated squaring.

power_mod(a, k, m) will produce the same result as aˆk % m but in general power_mod will be
much faster than using ˆ.

We can demonstrate this using the timeit command:

[1]: timeit('2 ^ 1234567890 % 10')

[1]: 5 loops, best of 3: 135 ms per loop

[2]: timeit('power_mod(2, 1234567890, 10)')

[2]: 625 loops, best of 3: 10.6 us per loop

1.4 Simultaneous linear congruences

Finally, we’ll cover a classic number theory problem (whose solution dates back to the 3rd century
by the Chinese mathematician Sun-tzu).

7

Suppose we want to solve the following system of congruences for x:

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

How could you find a solution x?

1.4.1 Brute force

The obvious answer: try x = 0, 1, 2, . . . one at a time and stop if you find an x which satisfies each
of the congruences simultaneously.

However, what if this method runs indefinitely?

How far do you need to go? Note that if x is a solution then x + k · 3 · 5 · 7 is also a solution for
all integers k. This follows because k · 3 · 5 · 7 reduces to 0 modulo 3, 5, and 7.

Thus, in the worst case you have to examine all x from 0 up to 104 = 3 · 5 · 7 − 1.

Analysis If P = ∏i mi is the product of the moduli mi then in the worst case P possibilities for x
will have to be tried, so this method runs in O(P) arithmetic operations modulo mi.

Again, this might sound reasonable at first but it is exponential in len(mi). Just imagine increasing
the first modulus from 3 to 3 trillion. This doesn’t even increase the length of the moduli (assuming
a 64-bit word size) but increases the running time of this method by a factor of trillion!

1.4.2 Example solution

Consider the first two congruences. Translating them into equations over the integers, we want to
find integers x, k, and l which satisfy

x = 2 + 3k x = 3 + 5l

Equating these, we want to solve 2+ 3k = 3+ 5l which is just a slightly-disguised linear Diophan-
tine equation that can be rewritten in the form

3k − 5l = 1. (3)

Since gcd(3, 5) = 1, Bézout’s identity tells us this equation has a solution in the integers and the
extended Euclidean algorithm allows us to find the solution (k, l) = (2, 1) leading to x = 8 which
satisfies the first two congruences. Recall that all solutions of (3) are given by (k, l) = (2 + 5a, 1 +
3a) for a ∈ Z leading to x = 8 + 15a as the general solution of the first two congruences.

Of course, this is only a solution of the first two congruences and we still have a third congruence
to consider. However, x = 8 + 15a for x ∈ Z is equivalent to the congruence x ≡ 8 (mod 15) so
we can rewrite the system as:

x ≡ 8 (mod 15)
x ≡ 2 (mod 7)

8

Now we can apply the same procedure as before! To solve these we want to solve x = 8 + 15l =
2 + 7k in integers which can be rewritten as 15l − 7k = −6. This has a solution since −6 is a
multiple of gcd(15, 7) = 1. The extended Euclidean algorithm produces

15 · 1 − 7 · 2 = 1
multiply by −6−−−−−−−−→ 15 · (−6)− 7 · (−12) = −6

so (l, k) = (−6,−12) and x = −82 is a solution. As previously noted, all numbers of the form
−82 + 105a for a ∈ Z are also solutions. The canonical representation of x is then 23. Indeed, we
find that:

23 ≡ 2 (mod 3)
23 ≡ 3 (mod 5)
23 ≡ 2 (mod 7)

1.5 Chinese remainder theorem

The formal mathematical result is known as the “Chinese remainder theorem”. It says that if
m0, . . . , mr−1 are pairwise coprime (gcd(mi, mj) = 1 for i ̸= j) then

x ≡ a0 (mod m0)

...
x ≡ ar−1 (mod mr−1)

has a unique solution x modulo m = m0 · · ·mr−1.

1.5.1 General solution

Given a0, . . . , ar−1 and m0, . . . , mr−1 how can we find the unique solution x?

In fact, the general solution is of the form

x ≡ a0L0 + a1L1 + · · ·+ ar−1Lr−1 (mod m)

where the Li are computed so that

Li ≡ 1 (mod mi)

Li ≡ 0 (mod mk) for all k ̸= i.

Reducing the expression for x modulo mi shows that x ≡ ai (mod mi), i.e., x is indeed a solution.
However, how can we compute values for the Li?

Since Li is a multiple of mk for all k ̸= i it follows that Li is also a multiple of the product ∏k ̸=i mk =
m
mi

. Thus we want to find Li such that

Li ≡ 1 (mod mi)

Li ≡ 0 (mod m/mi)

which is equivalent to the linear Diophantine equation s · mi + t · (m/mi) = 1. Since
gcd(mi, m/mi) = 1 we know the extended Euclidean algorithm allows us to find a satisfying
(s, t). Setting Li := t · (m/mi) gives Li ≡ 1 (mod mi) and Li ≡ 0 (mod n/mi).

9

1.5.2 A general formula

Explicitly, if you’d like a general formula, note that the t from above is defined to be
(m/mi)

−1 mod mi. Since Li = t · (m/mi) the general solution for x is

x =
r−1

∑
i=0

ai · ((m/mi)
−1 mod mi) · (m/mi). (4)

1.5.3 Cost analysis

First, we find the cost of computing m = ∏i mi. Note that len(∏k
i=0 mi) = O(∑k

i=0 len(mi)) =
O(len(m)). Computing each successive product for k = 1, . . . , r − 1 results in a total word opera-
tion cost of

O
(r−1

∑
k=1

len
(k

∏
i=0

mi

)
len(mi)

)
= O(len(m)) ·

r−1

∑
k=1

O(len(mi)) = O(len(m)2).

Next, once m is computed we can compute m/mi for i = 0, . . . , r − 1 using a total word operation
cost of

O
(r−1

∑
i=0

len(m/mi) len(mi)

)
= O(len(m)) ·

r−1

∑
i=0

O(len(mi)) = O(len(m)2).

Similarly, we can compute (m/mi) mod mi in the same cost. Next, we can compute (m/mi)
−1 mod

mi for i = 0, . . . , r − 1 using a total word operation cost of

O
(r−1

∑
i=0

len(mi)
2
)
= O

((r−1

∑
i=0

len(mi)
)2

)
= O(len(m)2).

Similarly, we can compute Li = ((m/mi)
−1 mod mi) · (m/mi) in a word operation cost of

O
(r−1

∑
i=0

len(mi) len(m/mi)

)
=

r−1

∑
i=0

O(len(mi)) · O(len(m)) = O(len(m)2).

Finally, to compute x from (4) assuming that len(ai) = O(len(mi)) uses a total word operation cost
of

O
(r−1

∑
i=0

len(mi) · len(m)

)
=

r−1

∑
i=0

O(len(mi)) · O(len(m)) = O(len(m)2).

In summary, we can solve simulaneous linear congruences using the formula (4) provided by the
Chinese remainder theorem and this requires O(len(m)2) word operations.

1.5.4 Takeaway

In summary, the Chinese remainder theorem provides a way of solving simultaneous linear con-
gruences when the moduli of the congruences are pairwise coprime. It also allows us to efficiently
compute the unique solution of such congruences—namely, quadratic in the length of the product
of the moduli.

Applications of the Chinese remainder theorem reach far beyond what it may seem like at first
glance. In fact, the Chinese remainder theorem essentially says that doing computations modulo

10

m = m0 · · ·mr−1 is in a sense equivalent to doing computations modulo each of m0, . . . , mr−1. This
is useful because computations modulo mi are cheaper than computations modulo m.

It also opens the possibility for parallelization: a computation that needs to be done modulo m
can instead be done modulo mi for each i = 0, . . . , r − 1. Since each computation modulo mi
is independent, the entire computation can be distributed across r processors. Once they’ve all
finished the final result modulo m can be computed using the Chinese remainder theorem.

For example, “Chinese remaindering” methods are very useful for linear system solving or deter-
minant computation on integer matrices.

1.6 Fermat’s Little Theorem

A classic theorem of the mathematician Fermat (known as his “little” theorem—not his more fa-
mous “last” theorem) is the following:

If p is a prime and a is not a multiple of p, then

ap−1 ≡ 1 (mod p). (5)

It is easy to see that the restriction on a is necessary: if a is a multiple of p then a ≡ 0 (mod p)
meaning ap−1 ≡ 0 (mod p).

However, by multiplying both sides of (5) by a gives an easier-to-state form that works for all a. If
p is a prime and a is an integer then

ap ≡ a (mod p).

1.6.1 Proof

There are many ways to prove Fermat’s Little Theorem, but we’ll present a nice short proof of (5)
using properties of modular arithmetic we’ve seen.

Consider the numbers a, 2a, . . . , (p − 1)a all computed modulo p. In fact, this list will be a rear-
rangement of 1, 2, . . . , p − 1, i.e.,

{ai mod p : 1 ≤ i < p} = {1, 2, . . . , p − 1}. (6)

Why? First, note that any ai mod p for 1 ≤ i < p will not reduce to zero, since both i and a are not
multiples of p. This shows the left set of (6) is a subset of the right set.

Next, there cannot be any duplicates among the elements ai mod p. For suppose there were two
duplicates for i and i′. Then ai ≡ ai′ (mod p) which implies (after multiplying by a−1 mod p
which exists since gcd(a, p) = 1) that i ≡ i′ (mod p). Since 1 ≤ i, i′ < p we must have i = i′

which implies the left-hand set of (6) has cardinality p − 1.

Both the left and right sets in (6) have the same cardinality and the left set is a subset of the right
set, so the two sets must be equal.

Now take the product of all the elements of the left set together and reduce mod p:

p−1

∏
i=1

ai ≡ ap−1(p − 1)! (mod p) (1)

11

However, this must also be equal to the product of the elements of the right set (which is (p − 1)!),
and so ap−1(p − 1)! ≡ (p − 1)! (mod p).

Since p is prime, (p − 1)! and p share no common factors, so gcd((p − 1)!, p) = 1, and we can
multiply both sides by (p − 1)!−1 mod p. Thus, ap−1 ≡ 1 (mod p).

1.6.2 Applications

First, this theorem can often be used to detect prime numbers—or more accurately to detect com-
posite numbers (numbers that have more than one prime factor).

If you have a number p that you want to test for primality then take some random a and compute
ap mod p; if the result is something other than a then p cannot be prime. Conversely, if the result
is a then p may or may not be prime.

Second, Fermat’s little theorem provides a simple way of computing modular inverses, because
an easy consequence of it is that if a and p are coprime then

ap−2 ≡ a−1 (mod p).

How fast is this? We know that ap−2 can be computed using repeated squaring with O(len(p −
2) · len(p)2) = O(len(p)3) word operations.

Although this is a simple method it is not the most efficient, since we saw that modular inverses
can be computed using the extended Euclidean algorithm which uses only O(len(p)2) word op-
erations.

1.6.3 Generalization

Finally, we’ll note one way in which the Fermat’s little theorem can be generalized and which will
be particularly useful in cryptography.

Suppose p and q are distinct prime numbers. We can use Fermat’s little theorem and the Chinese
remainder theorem to derive a version of Fermat’s little theorem that works modulo pq.

Suppose a is coprime with both p and q. We can derive the following congruences by raising ap−1

by q − 1 (in the first case) and aq−1 by p − 1 (in the second case):

a(p−1)(q−1) ≡ 1 (mod p)

a(p−1)(q−1) ≡ 1 (mod q)

Since p and q are coprime, the Chinese remainder theorem says that x ≡ 1 (mod p) and x ≡ 1
(mod q) has a unique solution modulo pq. However, one easily sees that x = 1 is a solution
(after all, 1 mod p = 1 and 1 mod q = 1), so the general solution is x ≡ 1 (mod pq). Since
x = a(p−1)(q−1) solves x ≡ 1 (mod p) and x ≡ 1 (mod q), it also follows that a(p−1)(q−1) ≡ 1
(mod pq).

For example, with (p, q) = (3, 5) we have that 2(3−1)(5−1) ≡ 28 ≡ 256 ≡ 1 (mod 3 · 5). However,
we also know the congruence will hold even if p and q are replaced with primes with 100s of
digits.

Note: This is a special case of Euler’s theorem, which says that if a and n are coprime then

aφ(n) ≡ 1 (mod n)

12

where φ(n) counts the number of positive integers up to n which are coprime to n. When n = pq
for distinct primes p and q one has φ(pq) = (p − 1)(q − 1).

13

	Modular Arithmetic
	Formal Definition
	Note on notation
	Unique representative
	Computing modular expressions

	Modular inverses
	Defining division
	Look familiar?
	Example
	Uniqueness
	Non-existence
	Analysis

	Modular exponentiation
	Cost analysis
	Can we do better?
	Repeated squaring
	Built-in Sage function

	Simultaneous linear congruences
	Brute force
	Example solution

	Chinese remainder theorem
	General solution
	A general formula
	Cost analysis
	Takeaway

	Fermat's Little Theorem
	Proof
	Applications
	Generalization

